Кварцевый фильтр своими руками. Кварцевый фильтр трансивера

При реализации частотных фильтров необходимо учитывать особенности их применения. Ранее мы уже рассмотрели, что активные фильтры (чаще всего ) удобно применять для реализации относительно низкочастотных фильтров. удобно применять в диапазоне частот от сотен килогерц до сотен мегагерц. Эти реализации фильтров достаточно удобны при изготовлении и в ряде случаев могут перестраиваться по частоте. Однако они обладают малой стабильностью параметров.

Значение сопротивления резисторов в фильтре не является постоянным. Оно меняется в зависимости от температуры, влажности или при старении элементов. То же самое можно сказать и про значение емкости конденсатора. В результате меняются частоты настройки полюсов фильтра и их добротности. Если есть нули коэффициента передачи фильтра, то их частоты настройки тоже меняются. В результате этих изменений фильтр меняет свою . Про такой фильтр говорят, что он "разваливается"

Подобная ситуация происходит и с пассивными LC фильтрами. Правда в LC фильтрах зависимость частоты полюса или нуля меньше зависит от значения индуктивности и емкости. Эта зависимость пропорциональна корню квадратному в отличие от линейной зависимости в RC схемах. Поэтому LC схемы обладают большей стабильностью параметров (приблизительно 10 −3).

При применении некоторых мер (таких как применение конденсаторов с положительным и отрицательным ТКЕ, термостабилизация) стабильность параметров описанных фильтров можно улучшить на порядок. Тем не менее при создании современно аппаратуры этого недостаточно. Поэтому, начиная с 40-х годов XX века велись поиски более стабильных решений.

В процессе исследований выяснили, что механические колебания, особенно в вакууме обладают меньшими потерями. Были разработаны фильтры на музыкальных камертонах, струнах. Механические колебания возбуждались, а затем снимались катушками индуктивности при помощи магнитного поля. Однако данные конструкции оказались дорогими и громоздкими.

Затем преобразование электрической энергии в механические колебания стали делать при помощи магнитострикционного и пьезо эффектов. Это позволило снизить габариты и стоимость фильтров. В результате исследований выяснили, что наибольшей стабильностью частоты колебаний обладают пластинки кварцевых кристаллов. Кроме того, они обладают пьезоэффектом. В результате к настоящему времени кварцевые фильтры являются самым распространенным видом высококачественных фильтров. Внутренняя конструкция и внешний вид кварцевого резонатора приведены на рисунке 1.


Рисунок 1. Внутренняя конструкция и внешний вид кварцевого резонатора

Одиночные кварцевые резонаторы редко используются в кварцевых фильтрах. Такое решение используется обычно радиолюбителями. В настоящее время намного выгодней купить готовый кварцевый фильтр. Тем более, что на рынке обычно предлагаются фильтры на наиболее распространенные промежуточные частоты. Фирмы-производители кварцевых фильтров для сокращения габаритов используют другое решение. На одной кварцевой пластине напыляется две пары электродов, которые образуют два резонатора, связанные между собой акустически. Внешний вид кварцевой пластинки с подобной конструкцией и чертеж корпуса, куда она размещается приведен на рисунке 2.


Рисунок 2. Внешний вид кварцевой пластинки с двумя резонаторами, чертеж корпуса и внешний вид кварцевого фильтра

Подобное решение получило название кварцевой двойки. Простейший кварцевый фильтр состоит из одной двойки. Её условно-графическое обозначение приведено на рисунке 3.


Рисунок 3. Условно-графическое обозначение кварцевой двойки

Кварцевая двойка по электрическим параметрам эквивалентна схеме полосового фильтра с двумя связанными контурами, приведенной на рисунке 4.


Рисунок 4. Двухконтурная схема фильтра, эквивалентная кварцевой двойке

Отличие заключается в достижимой добротности контуров, и, следовательно, полосе пропускания фильтра. Выигрыш особенно заметен на высоких частотах (десятки мегагерц). Кварцевые фильтры четвертого порядка выполняются на двух двойках, связанных между собой при помощи конденсатора. Вход и выход этих двоек уже не эквивалентен, поэтому обозначается точкой. Схема данного фильтра приведена на рисунке 5.


Рисунок 5. Схема кварцевого фильтра четвертого порядка

Фильтры L1C1 и L2C3 как обычно предназначены для трансформации входного и выходного сопротивления и приведения их к стандартному значению. Подобным же образом строятся кварцевые фильтры восьмого порядка. Для их реализации используют четыре кварцевых двойки, но в отличие от предыдущего варианта фильтр выполняется в одном корпусе. Принципиальная схема подобного фильтра приведена на рисунке 6.



Рисунок 6. Принципиальная схема кварцевого фильтра восьмого порядка

Внутреннюю конструкцию кварцевого фильтра восьмого порядка можно изучить по фотографии фильтра со снятой крышкой, которая приведена на рисунке 7.



Рисунок 7. Внутренняя конструкция кварцевого фильтра восьмого порядка

На фотографии четко просматриваются четыре кварцевых двойки и три конденсатора поверхностного монтажа (SMD). Подобная конструкция используется во всех современных фильтрах, как проникающего, так и поверхностного монтажа. Ее применяют как отечественные, так и зарубежные производители кварцевых фильтров. Из отечественных производителей можно назвать ОАО "Морион", ООО НПП "Метеор-Курс" или группу предприятий Пьезо. В списке литературы приведены некоторые из зарубежных производителей кварцевых фильтров. Следует заметить, что приведенная на рисунке 7 конструкция легко реализуется и в корпусах поверхностного монтажа (SMD).

Как мы видим, сейчас нет проблем купить готовый кварцевый фильтр с минимальными размерами и по приемлемой цене. Их можно использовать для проектирования высококачественных приемников, передатчиков трансиверов или других видов радиооборудования. Для того, чтобы легче ориентироваться в типах предлагаемых на рынке кварцевых фильтров, приведем график типовых зависимостей амплитудно-частотной характеристики от числа резонаторов (полюсов), приведенную фирмой SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL


Рисунок 8. Типовая форма АЧХ кварцевого фильтра в зависимости от числа полюсов

Литература:

Вместе со статьёй "Кварцевые фильтры" читают:


http://сайт/Sxemoteh/filtr/SAW/


http://сайт/Sxemoteh/filtr/piezo/


http://сайт/Sxemoteh/filtr/Ceramic/


http://сайт/Sxemoteh/filtr/Prototip/

Часто в статьях встречаешь фразу: "Кварцевый фильтр легче настроить при помощи характериографов (например, X1-38, X-1-48, СК-4-59 и др.). Конечно, если они есть, то настройка фильтра проста. Но это если у вас есть соответствующий прибор, да еще и инструкция к нему. В противном случае слово "просто" быстренько превратится в противоположное ему "трудно". Поэтому в данной статье делается упор на настройку кварцевого фильтра с использованием простейших приборов.

В некоторых статьях опускают информацию о типе настраиваемого фильтра (лестничный, мостовой, монолитный), описывая общие правила настройки. Однако я пришел к выводу, что каждый из них имеет, наряду с общими, еще и свои собственные особенности.

Начнем с настройки фильтра лестничного типа (рис.1).


Рис.1

Опыт показывает, что:

Фильтр получается с лучшими параметрами, если все кварцы имеют как можно более близкие частоты последовательного резонанса (±10 Гц). Однако не стоит расстраиваться, если это условие не выполнимо, ибо неплохой фильтр получается и при разносе частот до 1 кГц ;

Подбирать кварцы лучше всего включая их в опорном генераторе того устройства, в котором предполагается эксплуатировать этот фильтр, а самый низкочастотный из них использовать непосредственно в опорном генераторе. При этом подстроечные элементы генератора не следует трогать;

Настраивать фильтр следует непосредственно в составе "родного" аппарата;

Если кварцы имеют неодинаковые частоты, их следует располагать в следующей последовательности: наиболее высокочастотный установить первым на входе, а все последующие - поочередно слева направо, по рангу, с понижением частоты;

Емкости следует применять малогабаритные, с минимальным температурным коэффициентом емкости (ТКЕ) с точностью не хуже ±1,5%. Но не отчаивайтесь, если таковые не найдутся, ибо в процессе настройки их все равно придется подбирать. В большинстве случаев в процессе настройки бывает заменено до 90% емкостей на другие (хотя и близкие) номиналы;

Кварцы лучше использовать фильтровые (взятые, например, из разобранных заводских фильтров).

Так, из четырех фильтров на частоту 10,7 МГц (типа ФП2П-325-10700М-15) можно собрать четыре лестничных восьмикристальных фильтра (в этих фильтрах имеется по четыре пары кварцев с одинаковыми частотами) с разными, но близкими к 10,7 МГц частотами. Обычно так и поступают несколько радиолюбителей (как правило, 4 человека), имеющих по одному фильтру. Самый опытный из них подбирает одинаковые по частоте четыре комплекта кварцев, затем кварцы с минимальным. разбросом оставляет себе, а остальные отдает обратно друзьям (или наоборот?!). С несколько меньшим успехом можно использовать и генераторные кварцы.

В домашних условиях кварцевый фильтр можно настроить тремя способами.

В первом случае следует использовать (кроме настраиваемого аппарата) в качестве вспомогательного прибора другой трансивер с цифровой шкалой, во втором случае - ГСС (генератор стандартных сигналов) и частотомер (с предельной частотой, превышающей хотя бы низшую частоту вашего настраиваемого устройства, например 1,9 МГц). Частотомером измеряют либо частоту ГСС, либо частоту ГПД исследуемого аппарата.

В третьем случае используется кварцевый гетеродин на одну из рабочих частот (либо ГСС, либо другой трансивер без цифровой шкалы), и обязательно наличие цифровой шкалы в настраиваемом аппарате.

Во всех трех случаях на вход настраиваемого аппарата подают ВЧ-сигнал рабочего диапазона. В первых двух случаях медленно изменяют подаваемую частоту в полосе прозрачности кварцевого фильтра, снимая при этом показания S-метра в относительных единицах, и через каждые 200 Гц записывают их в таблицу. Затем, согласно таблице, строят графики (АЧХ). По вертикали откладывают показания S-метра, а по горизонтали - частоту. Соединив проставленные на графике точки интерполяционной (усредняющей) линией, получают АЧХ - амплитудно-частотную характеристику новоиспеченного фильтра.

В третьем случае все проделывают аналогично, только перестраивают по частоте сам настраиваемый аппарат, снимая показания непосредственно с его цифровой шкалы и S-метра одновременно.

При этом "новоиспеченный" фильтр, как правило, имеет:

Иную полосу, чем требуется;

Неравномерность в верхней части АЧХ;

Пологий (а иногда с выбросами) нижний скат АЧХ.

В дальнейшем настройка фильтра ведется по трем вышеуказанным направлениям в порядке очередности.

На первом этапе настройки (грубая настройка) следует получить полосу пропускания фильтра до 2,4 кГц путем поочередной замены емкостей, начиная от входа фильтра, и снятия при этом АЧХ. При этом следует иметь в виду следующее:

Если параллельно кварцам (особенно крайним) установить дополнительные емкости и увеличивать их номинал (до определенного предела), то ширина полосы пропускания фильтра будет уменьшаться. Аналогичный эффект будет наблюдаться и при увеличении емкостей конденсаторов, идущих на корпус. При уменьшении величин этих емкостей будет наблюдаться обратный эффект. Данное свойство используют для сужения полосы пропускания кварцевого фильтра в телеграфном режиме. Таким образом полосу пропускания можно уменьшить до 0,8 кГц. При дальнейшем сужении полосы резко увеличивается затухание фильтра в полосе прозрачности (для получения малого затухания в CW-фильтре следует использовать резонаторы с добротностью, по крайней мере на порядок превышающей добротность фильтра);

Величина "горбов" и провалов в верхней части АЧХ (линейность характеристики) будет зависеть не только от величины подбираемых емкостей, но и от величины сопротивления нагрузочных резисторов, установленных на входе и выходе фильтра. При уменьшении их сопроитвления линейность характеристики улучшается, но увеличивается затухание в полосе пропускания фильтра;

При невозможности получения достаточной крутизны нижнего ската, следует параллельно нагрузочным резисторам установить кварцы, аналогичные используемым в фильтре, при этом из всех имеющихся кварцев следует выбрать наиболее низкочастотный или понизить его частоту путем последовательного включения индуктивности. Подбором количества витков этой индуктивности можно менять крутизну нижнего ската;

Настройку фильтра нужно повторить несколько раз. Если на последнем этапе настройки не удается получить приемлемей АЧХ, необходимо попробовать подогнать частоту последовательного резонанса отдельных кварцев. Для этого последовательно кварцу устанавливают конденсатор, и подборкой этого конденсатора добиваются генерации на частоте остальных кварцев. Если это не поможет (а это может быть при малом разносе между частотами параллельного и последовательного резонансов кварца), следует заменить кварцы. Кварцы в фильтре следует располагать в цепочку, тщательно экранируя вход от выхода. На рис.2 показаны АЧХ КФ приемника "TURBO-TEST", снятые при различных значениях емкостей конденсаторов. -


Рис.2- Для большей наглядности значения частоты сняты без соблюдения принимаемой боковой полосы и действительного значения ПЧ. На рис.3 показаны АЧХ окончательного варианта настройки фильтра. -


Рис.3

Теперь несколько практических советов по настройке мостового кварцевого фильтра. Такой фильтр показан на рис.4. Катушки L1 и L2 содержат 2х10 витков провода диаметром 0,31 мм, в качестве сердечников использованы ферритовые кольца от фильтра ФП2А-325-10,700 М-15. Ширина полосы пропускания фильтра - 2,6 кГц.


Рис.4

Если у вас изготовлен фильтр на низкие частоты (2...6 МГц), он обычно получается более узкополосным, чем требуется, а если фильтр на высокие частоты (8...10 МГц) - слишком широкополосным. В первом случае следует расширить полосу пропускания путем подключения к верхним, либо к нижним (рис.4) кварцам катушек индуктивности, которые следует подобрать экспериментально. Во втором случае, чтобы уменьшить полосу пропускания, необходимо параллельно резонаторам подсоединить подстроечные конденсаторы (аналогично катушкам). Кварцы в фильтре нужно подобрать с точностью до 50 Гц (частота последовательного резонанса), причем частоты всех верхних резонаторов должны быть одинаковыми и отличаться от нижних (также одинаковых) на 2...3 кГц.

Если в наличии имеются только кварцы на одинаковые частоты, можно изменить частоту кварцев путем стирания посеребренного слоя с кристалла (повысить частоту) или путем заштриховки карандашом (понизить). Но практика показывает, что стабильность параметров такого фильтра с течением времени оставляет желать лучшего.

Более устойчивые результаты дает подгонка частоты путем последовательного включения с кварцем подстроечного конденсатора. После настройки конденсатор желательно заменить на постоянную емкость такой же величины.

При большой ширине полосы пропускания фильтра, в середине его АЧХ может появиться провал (затухание). Следует сказать, что его глубина в значительной мере зависит от сопротивления резисторов R1 и R2. Их величина может быть от сотен Ом (при полосе 3 кГц) на частотах 8...10 МГц до нескольких килоом на более низких частотах и при меньшей полосе пропускания фильтра. При изготовлении мостового фильтра следует большое внимание уделить симметричности его плеч, а также обмоток входящих в него трансформаторов, ну и, конечно, тщательной экранировке входа от выхода. Более подробно о мостовых фильтрах можно прочитать в.

Литература

1. Гончаренко И. Лестничные фильтры на неодинаковых резонаторах. - Радио, 1992, №1, С. 18.
2. Бунин С.Г, ЯйленкоЛ.П. Справочник радиолюбителя-коротковолновика. - К.: Техника, 1984, С.21...25.

Кварцевый фильтр - это, как известно, “половина хорошего трансивера”. В предлагаемой статье приведены практическая конструкция двенадцати кристального кварцевого фильтра основной селекции для высококачественного трансивера и приставки к компьютеру, позволяющие настроить этот и любые другие узкополосные фильтры. В любительских конструкциях в последнее время в качестве фильтра основной селекции используют кварцевые восьми кристальные фильтры лестничного типа, выполненные на одинаковых резонаторах. Эти фильтры относительно просты в изготовлении и не требуют больших материальных затрат.

Для их расчета и моделирования написаны компьютерные программы. Характеристики фильтров вполне удовлетворяют требованиям качественного приема и передачи сигнала. Однако при всех преимуществах у этих фильтров имеется и существенный недостаток - некоторая асимметрия АЧХ (пологий низкочастотный скат) и, соответственно, невысокий коэффициент прямоугольности.

Загруженность радиолюбительского эфира определяет достаточно жесткие требования к избирательности современного трансивера по соседнему каналу, поэтому фильтр основной селекции должен обеспечивать затухание вне полосы пропускания не хуже 100 дБ при коэффициенте прямоугольности 1,5... 1,8 (по уровням -6/-90 дБ).

Естественно, что потери и неравномерность АЧХ в полосе пропускания фильтра должны быть минимальны. Руководствуясь рекомендациями, изложенными в , за основу был выбран десяти кристальный лестничный фильтр с чебышевской характеристикой при неравномерности АЧХ 0,28 дБ.

Чтобы увеличить крутизну скатов параллельно входу и выходу фильтра были введены дополнительные цепи, состоящие из последовательно включенных кварцевых резонаторов и конденсаторов.

Расчеты параметров резонаторов и фильтра проводились по методике, описанной в . Для полосы пропускания фильтра 2,65 кГц были получены исходные значения C1,2 = 82,2 пФ, Lкв = 0,0185 Гн, Rн = 224 Ом. Схема фильтра и расчетные значения номиналов конденсаторов показаны на рис. 1.

В конструкции использованы кварцевые резонаторы для телевизионных PAL-декодеров на частоту 8,867 МГц, выпускаемые ВНИИСИМС (г. Александров Владимирской области). Свою роль в выборе сыграли стабильная повторяемость параметров кристаллов, их малые габариты и невысокая стоимость.

Подбор частоты кварцевых резонаторов для ZQ2- ZQ11 проводился с точностью ±50 Гц. Измерения проводились с помощью самодельного автогенератора и промышленного частотомера. Резонаторы ZQ1 и ZQ12 для параллельных цепей подобраны из других партий кристаллов с частотами соответственно ниже и выше основной частоты фильтра примерно на 1 кГц.

Фильтр собран на печатной плате из двусторонне фольгированного стеклотекстолита толщиной 1 мм (рис. 2).

Верхний слой металлизации использован в качестве общего провода. Отверстия со стороны установки резонаторов раззенкованы. Корпусы всех кварцевых резонаторов соединены с общим проводом пайкой.

Перед установкой деталей печатная плата фильтра запаивается в коробочку из луженой жести с двумя съемными крышками. Также со стороны печатных проводников припаивается экран-перегородка, проходящая между выводами резонаторов по центральной осевой линии платы.


На рис. 3 приведена монтажная схема фильтра. Все конденсаторы в фильтре - КД и КМ.

После того как фильтр был изготовлен, возник вопрос: каким образом в домашних условиях измерить его АЧХ с максимальным разрешением?

Был задействован домашний компьютер с последующей проверкой результатов измерений построением АЧХ фильтра по точкам с применением селективного микровольтметра. Меня, как конструктора радиолюбительской аппаратуры, очень заинтересовала идея, предложенная DG2XK , использовать компьютерную программу низкочастотного (20 Гц...22 кГц) спектроанализатора для измерения АЧХ узкополосных радиолюбительских фильтров.

Ее суть заключается в том, что высокочастотный спектр АЧХ кварцевого фильтра с помощью обычного SSB детектора переносится в диапазон низких частот и компьютер с установленной программой анализатора спектра дает возможность посмотреть АЧХ этого фильтра на дисплее.

В качестве источника высокочастотного сигнала DG2XK использован генератор шума на стабилитроне. Проведенные мной эксперименты показали, что такой источник сигнала позволяет просматривать АЧХ до уровня не более - 40 дБ, что явно недостаточно для качественной настройки фильтра. Для того чтобы просмотреть АЧХ фильтра на уровне -100 дБ, генератор должен иметь

уровень боковых шумов ниже указанной величины, а детектор - хорошую линейность при максимальном динамическом диапазоне не хуже 90... 100 дБ.

По этой причине генератор шума был заменен традиционным генератором качающейся частоты (рис. 4). За основу взята схема кварцевого генератора , у которого относительная спектральная плотность мощности шумов равна -165 дБ/Гц. Это означает, что мощность шумов генератора при расстройке 10 кГц в полосе 3 кГц

меньше мощности основного колебания генератора на 135 дБ!

Схема первоисточника немного видоизменена. Так вместо биполярных транзисторов применены полевые, а последовательно с кварцевым резонатором ZQ1 включен контур, состоящий из катушки индуктивности L1 и варикапов VD2-VD5. Частота генератора перестраивается относительно частоты кварца в пределах 5 кГц, что вполне достаточно для измерения АЧХ узкополосного фильтра.

Кварцевый резонатор в генераторе аналогичный фильтровому. В режиме генератора качающейся частоты управляющее напряжение на варикапы VD2- VD5 подается с генератора пилообразного напряжения, выполненного на однопереходном транзисторе VT2 с генератором тока на VT1.

Для ручной перестройки частоты генератора применен многооборотный резистор R11. Микросхема DA1 работает как усилитель напряжения. От первоначально задуманного синусоидального управляющего напряжения пришлось отказаться ввиду неравномерной скорости прохода ГКЧ разных участков АЧХ фильтра, а для достижения максимальной разрешающей способности частота генератора снижена до 0,3 Гц. Переключателем SA1 выбирается частота генератора "пилы" - 10 или 0,3 Гц. Девиация частоты ГКЧ устанавливается подстроечным резистором R10.

Принципиальная схема блока детектора показана на рис. 5. Сигнал с выхода кварцевого фильтра подается на вход Х2, если контур L1C1C2 используется в качестве нагрузки фильтра.

Если измерения проводятся на фильтрах, нагруженных на активное сопротивление, этот контур не нужен. Тогда сигнал с резистора нагрузки подается на вход Х1, а на печатной плате детектора удаляется проводник, соединяющий входХ1 с контуром.

Истоковый повторитель с динамическим диапазоном более 90 дБ на мощном полевом транзисторе VT1 согласует сопротивление нагрузки фильтра и входного сопротивления смесителя. Детектор выполнен по схеме пассивного балансного смесителя на полевых транзисторах VT2, VT3 и имеет динамический диапазон более 93 дБ.

На объединенные затворы транзисторов через П-контуры C17L2C20 и C19L3C21 поступают противофазные синусоидальные напряжения уровнем 3...4В (эфф.) от опорного генератора. В опорном генераторе детектора, выполненном на микросхеме DD1, установлен кварцевый резонатор с частотой 8,862 МГц.

Образовавшийся на выходе смесителя низкочастотный сигнал усиливается примерно в 20 раз усилителем на микросхеме DA1. Так как звуковые карты персональных компьютеров имеют сравнительно низкоомный вход, в детекторе установлен мощный ОУ К157УД1. АЧХ усилителя скорректирована так, чтобы ниже частоты 1 кГц и выше частоты 20 кГц наблюдался спад усиления приблизительно -6 дБ на октаву.


Генератор качающейся частоты смонтирован на печатной плате из двусторонне фольгированного стеклотекстолита (рис. 6). Верхний слой платы служит общим проводом, отверстия под выводы деталей, не имеющие с ним контакта, раззенкованы.

Плата запаяна в коробку высотой 40 мм с двумя съемными крышками. Коробка изготовлена из луженой жести. Катушки индуктивности L1, L2, L3 намотаны на стандартных каркасах диаметром 6,5 мм с подстроечниками из карбонильного железа и помещены в экраны. L1 содержит 40 витков провода ПЭВ-2 0,21, L3 и L2 - соответственно 27 и 2+4 витка провода ПЭЛШО-0,31.

Катушка L2 намотана поверх L3 ближе к “холодному” концу. Все дроссели стандартные - ДМ 0,1 68 мкГн. Постоянные резисторы МЛТ, подстроечные R6, R8 и R10 типа СПЗ-38. Многооборотный резистор - ППМЛ. Постоянные конденсаторы - КМ, КЛС, КТ, оксидные - К50-35, К53-1.

Налаживание ГКЧ начинают с установки максимального сигнала на выходе генератора пилообразного напряжения. Контролируя осциллографом сигнал на выводе 6 микросхемы DA1, подстроечными резисторами R8 (усиление) и R6 (смещение) устанавливают амплитуду и форму сигнала, приведенную на эпюре в точке А. Подбором резистора R12 добиваются устойчивой генерации без вхождения в режим ограничения сигнала.

Подбирая емкость конденсатора С14 и подстраивая контур L2L3, настраивают выходную колебательную систему в резонанс, что гарантирует хорошую нагрузочную способность генератора. Подстроечником катушки L1 устанавливают границы перестройки генератора в пределах 8,8586-8,8686 МГц, что с запасом перекрывает полосу АЧХ испытуемого кварцевого фильтра. Для обеспечения максимальной перестройки ГКЧ

(не менее 10 кГц) вокруг точки соединения L1, VD4, VD5 верхний слой фольги удален. Без нагрузки выходное синусоидальное напряжение генератора равно 1В (эфф).

Блок детектора выполнен на печатной плате из двусторонне фольгированного стеклотекстолита (рис. 7).

Верхний слой фольги используется в качестве общего провода. Отверстия под выводы деталей, не имеющие контакт с общим проводом, зенкуют.

Плата запаивается в жестяную коробку высотой 35 мм со съемными крышками. От качества изготовления приставки зависит ее разрешающая способность.

Катушки L1 -L4 содержат по 32 витка провода ПЭВ-0,21, намотанных виток к витку на каркасах диаметром 6 мм. Подстроечники в катушках от броневых сердечников СБ-12а. Все дроссели типа ДМ-0,1. Индуктивность L5 - 16 мкГн, L6, L8 - 68 мкГн, L7- 40 мкГн. Трансформатор Т1 намотан на кольцевом ферритовом магнитопроводе 1000НН типоразмера К10 x 6 x 3 мм и содержит в первичной обмотке 7 витков, во вторичной - 2 x 13 витков провода ПЭВ-0,31.

Все подстроечные резисторы - СПЗ-38. Во время предварительной настройки блока высокочастотным осциллографом контролируют синусоидальный сигнал на затворах транзисторов VT2, VT3 и, при необходимости, подстраивают катушки L2, L3. Подстроечником катушки L4 частота опорного генератора уводится ниже полосы пропускания фильтра на 5 кГц. Это делается для того, чтобы на рабочем участке анализатора спектра меньше наблюдалось различных помех, уменьшающих разрешающую способность устройства.


Генератор качающейся частоты подключают к кварцевому фильтру через согласующий колебательный контур с емкостным делителем (рис. 8).

В процессе настройки это позволит получить малые затухание и неравномерность в полосе пропускания фильтра.

Второй согласующий колебательный контур, как уже упоминалось, находится в детекторной приставке. Собрав схему измерения и подключив выход приставки (разъем ХЗ) на микрофонный или линейный вход звуковой карты персонального компьютера, запускаем программу спектроанализатора. Существует несколько таких программ. Автором была использована программа SpectraLab v.4.32.16, размещенная по адресу: http://cityradio.narod.ru/utilities.html. Программа удобна в пользовании и обладает большими возможностями.

Итак, запускаем программу “SpektroLab” и, подстраивая частоты ГКЧ (в режиме ручного управления) и опорного генератора в детекторной приставке, выставляем пик спектрограммы ГКЧ на отметку 5 кГц. Далее, балансируя смеситель детекторной приставки, пик второй гармоники уменьшают до уровня шумов. После этого включается режим ГКЧ и на мониторе появляется долгожданная АЧХ испытуемого фильтра. Вначале включается частота качания 10 Гц и, подстраивая с помощью R11 центральную частоту, а затем и полосу качания R10 (рис. 4), устанавливаем приемлемую “картинку” АЧХ фильтра в реальном времени. Во время измерений, подстраивая согласующие контуры, добиваются минимальной неравномерности в полосе пропускания.

Далее для достижения максимальной разрешающей способности устройства включаем частоту качания 0,3 Гц и устанавливаем в программе максимально возможное количество точек преобразования Фурье (FFT, у автора 4096...8192) и минимальное значение параметра усреднения (Averaging, у автора 1).

Так как характеристика рисуется за несколько проходов ГКЧ, то включается режим запоминающего пикового вольтметра (Hold). В итоге на мониторе получаем АЧХ исследуемого фильтра.

С помощью курсора мыши получаем необходимые цифровые значения полученной АЧХ на нужных уровнях. При этом надо не забыть измерить частоту опорного генератора в детекторной приставке, чтобы потом получить истинные значения частот точек АЧХ.

Оценив первоначальную “картинку”, подстраивают частоты последовательного резонанса ZQ1n ZQ12 соответственно на нижний и верхний скаты АЧХ фильтра, добиваясь максимальной прямоугольности на уровне - 90 дБ.

В заключение с помощью принтера получаем полновесный “документ” на изготовленный фильтр. В качестве примера на рис. 9 приведена спектрограмма АЧХ этого фильтра. Там же приведена спектрограмма сигнала ГКЧ. Видимая неравномерность левого ската АЧХ на уровне -3...-5 дБ устраняется перестановкой кварцевых резонаторов ZQ2-ZQ11.


В итоге получаем следующие характеристики фильтра: полоса пропускания по уровню - 6 дБ - 2,586 кГц, неравномерность АЧХ в полосе пропускания - менее 2 дБ, коэффициент прямоугольности по уровням - 6/-60 дБ - 1,41; по уровням - 6/-80 дБ 1,59 и по уровням - 6/-90 дБ - 1,67; затухание в полосе - менее 3 дБ, а за полосой - более 90 дБ.

Автор решил проверить полученные результаты и измерил АЧХ кварцевого фильтра по точкам. Для измерений потребовался селективный микровольтметр с хорошим аттенюатором, коим послужил микровольтметр типа HMV-4 (Польша) с номинальной чувствительностью 0,5 мкВ (в то же время хорошо фиксирующий сигналы с уровнем 0,05 мкВ) и аттенюатором в 100 дБ.

Для этого варианта измерений была собрана схема, приведенная на рис. 10. Согласующие контуры по входу и выходу фильтра тщательно экранированы. Соединительные экранированные провода применены хорошего качества. Также тщательно выполнены “земляные” цепи.

Плавно изменяя частоту ГКЧ резистором R11 и переключая по 10 дБ аттенюатор, снимаем показания микровольтметра, проходя по всей АЧХ фильтра. Используя данные измерений и тот же масштаб, строим график АЧХ (рис. 11).

Благодаря высокой чувствительности микровольтметра и малым боковым шумам ГКЧ хорошо фиксируются сигналы на уровне -120 дБ, что четко отражено на графике.

Результаты измерений получились следующие: полоса пропускания по уровню - 6 дБ - 2,64 кГц; неравномерность АЧХ - менее 2 дБ; коэффициент прямоугольности по уровням -6/-60 дБ равен 1,386; по уровням - 6/-80 дБ - 1,56; по уровням - 6/-90 дБ - 1,682; по уровням - 6/-100 дБ - 1,864; затухание в полосе - менее 3 дБ, за полосой - более 100 дБ.

Некоторые отличия результатов измерений от компьютерного варианта объясняются наличием накапливающихся ошибок цифроаналогового преобразования при изменении анализируемого сигнала в большом динамическом диапазоне.

Необходимо отметить, что приведенные графики АЧХ кварцевого фильтра получены при минимальном объеме настроечных работ и при более тщательном подборе компонентов, характеристики фильтра могут быть заметно улучшены.

Предложенная схема генератора может быть с успехом использована для работы АРУ и детекторов. Подав сигнал генератора качающейся частоты на детектор, на выходе приставки к ПК получаем сигнал низкочастотного генератора качающейся частоты, с помощью которого можно легко и быстро настроить любой фильтр и каскад НЧ тракта трансивера.

Не менее интересно использовать предлагаемую детекторную приставку в составе панорамного индикатора трансивера. Для этого следует подключить к выходу первого смесителя кварцевый фильтр с полосой пропускания 8...10 кГц. Далее полученный сигнал усилить и подать на вход детектора. В этом случае можно наблюдать сигналы своих корреспондентов с уровнями от 5 до 9 баллов с хорошей разрешающей способностью.

Г. Брагин (RZ4HK)

Литература:

1. Усов В. Кварцевый фильтр SSB. - Радиолюбитель, 1992, № 6, с. 39, 40.

2. Дроздов В. В. Любительские KB трансиверы. - М.: Радио и связь, 1988.

3. Klaus Raban (DG2XK) Optimizierung von Eigenbau-Quarzfiltern mit der PC-Soundkarte. - Funkamateur, № 11, 2001, S. 1246-1249.

4. Frank Silva. Shmutzeffekte vermeiden und beseitig. - FUNK, 1999, 11, S. 38.

Кварцевые фильтры «Десна»

Восьмикристальный кварцевый фильтр «Десна». Собран, настроен, без корпуса (экранированной коробки). Кварцевый фильтр на частоту 8,865 МГц. Фильтр собран на печатной плате 75х19 мм. В комплект входят 2 опорных кварца (SSB,CW). Коэффициент прямоугольности по уровням 6 и 60 дБ – 1.5; затухание за полосой пропускания более 80 дБ; неравномерность в полосе пропускания не более 3 дБ; полоса пропускания по уровню 6 дБ – 2,4 кГц; Rвх и Rвых. от 200 до 280 Ом (указано в паспорте). Возможно изготовление нескольких КФ на одну частоту с разбросом не более 20 Гц.

Четырехкристальный кварцевый фильтр «Десна». Собран, настроен, без корпуса (экранированной коробки). Кварцевый фильтр на частоту 8,865 МГц, К.п. 2,1; полоса пропускания 2,4 КГц. В комплект входят 2 опорных кварца (SSB,CW). Фильтр собран на печатной плате 35х19 мм. Возможно изготовление нескольких КФ на одну частоту с разбросом не более 20 Гц.

Четырехкристальный (подчисточный) кварцевый фильтр «Десна». Собран, настроен, без корпуса (экранированной коробки). Изготавливается на частоту основного КФ. Возможность изменения полосы от 2,7 до 0,7 кГц. Фильтр выполняется на печатной плате 30х15 мм. В комплект входят 3 варикапа КВ-127.

Набор радиолюбителя «Десна»

Набор «Десна» предназначен для изготовления кварцевых фильтров: восьмикристального основной селекции и четырехкристального подчисточного с изменяемой полосой пропускания (0,7 – 2,7кГц) для устройств с одним преобразованием частоты, используемых в любительской радиосвязи.

Для изготовления лестничных кварцевых фильтров используются одинаковые кварцевые резонаторы от телевизионных PAL/SECAM приставок. Как показали измерения, указанные кварцы имеют высокую добротность, резонансный промежуток составляет около 12 - 15 кГц. Изготовленный восьмикристальный кварцевый фильтр из таких резонаторов имеет следующие параметры:

    коэффициент прямоугольности по уровням 6 и 60 дБ ~ 1.6;

    затухание за полосой пропускания более 80 дБ;

    неравномерность в полосе пропускания – 1.5 - 2 дБ;

    полоса пропускания по уровню 6 дБ – 2.4  0,15 КГц;

    входное и выходное сопротивление - 20210 Ом.

В состав набора входит:

    подобранных кварцевых резонаторов « NEW » (С = 5 Пф) – 12 шт.;

    кварцевые резонаторы опорных генераторов (обозначены – Г) – 2 шт.

    Конденсатор КМ-12-15пФ – 2 шт. Конденсатор КМ-91пФ – 2 шт.

    Конденсатор КМ-39пФ – 2 шт. Конденсатор КМ-110пФ – 2 шт.

    Конденсатор КМ-47пФ – 2 шт. Конденсатор КМ-120пФ – 2 шт.

    Конденсатор КМ-56пФ – 2 шт. Печатная плата – 2 шт.

    Варикап КВ-127А (Б) – 3 шт.

* Номиналы конденсаторов даны для кварцевых резонаторов только данного типа «NEW».

П
ринципиальные схемы КФ и ПКФ:


С1,С7-39пФ, С2,С6-12-15пФ, С3,С5-47пФ, С4-91пФ, С8,С11-120пФ, С9,С10-110пФ. С1,С3-56пФ, С2-91пФ.

Фильтры выполняются на печатных платах. По одному из выводов (обозначенных *) крайних резонаторов, а в ПКФ и всех четырех, на платах не обрезать, они будут - вход / выход КФ и ПКФ, а так же для подключения дополнительных конденсаторов в ПКФ.




Схема включения четырехкристального подчисточного фильтра

Простой и дешевый фильтр для SSB

Воронцов А. RW6HRM предлагает в качестве альтернативы ЭМФ-ам применять простую и главное-дешевую схему кварцевого фильтра. Статья актуальна ввиду дифицита и дороговизны данных элементов.

В последнее время очень часто в Интернет-публикациях встречаются «слезы» начинающих радиолюбителей, мол, трудно достать ЭМФ, это дорого, кварцевый фильтр сделать сложно, необходимы приборы и т.п. Действительно, достать сейчас хороший новый ЭМФ достаточно проблематично, что предлагается на рынке – это глубокое б/у без гарантии нормальной работы, а сваять кварцевый фильтр даже на имеющихся в продаже кварцах на 8,86 МГц не обладая соответствующей контрольно-измерительной аппаратурой, «на глазок», невозможно. На первый взгляд ситуация не ахти…

Однако есть вариант сделать простой кварцевый фильтр для низкочастотного SSB-передатчика или трансивера достаточно простым и самое главное – недорогим. Достаточно пройтись по радиомагазинам и узреть в продаже «двухножковые» кварцы для пультов ДУ на частоты от 450 до 960 кГц. Данные детали делают с достаточно большими допусками на генерируемые частоты, что дает нам право выбора как используемой промежуточной частоты, так и полосы пропускания делаемого фильтра. Сразу оговорюсь: идея не моя, ранее её апробировал шведский радиолюбитель HARRY LYTHALL, SM0VPO, а я просто сообщаю об этом Вам (предварительно сделав несколько фильтров для себя).

Итак, что нам требуется для подбора кварцев – простой генератор типа «трехточка» и частотомер или радиоприемник с частотомером, перекрывающий любительский диапазон 160 метров. Из кучи кварцев нам требуется выбрать два с разносом генерируемых частот в 1 – 1,5 кГц. Если мы используем кварцы на частоту 455 кГц, то удобнее всего настраиваться на их четвертую гармонику (около 1820 кГц, добиваясь разноса в 4 – 4,5 кГц), а если 960 кГц, то на вторую (1920 кГц, разнос 2 – 2,5 кГц).

Контур CL1 в данном примере является нагрузкой предыдущего каскада УПЧ, это стандартный контур на 455 кГц из любого зарубежного раскуроченного АМ-приемника. Можно также использовать данные из радиолюбительской литературы для самодельных контуров на частоту 465 кГц, уменьшив количество витков на 5%. Точками обозначено начало катушек связи L2 и L3, им достаточно по 10 – 20 витков. Вполне возможно поставить фильтр сразу после смесителя, к примеру, кольцевого на четырех диодах. В этом случае уже получится трансформатор 1:1:1, который можно выполнить на кольце Ф600 с внешним диаметром 10 – 12 мм, количество витков скрученного тройного провода ПЭЛ-0,1 – 10 – 30. Конденсатор С в случае трансформатора, естественно, не нужен. Если второй каскад УПЧ выполнен на транзисторе, то резистор 10 кОм возможно использовать в токозадающей базовой цепи, тогда разделительный конденсатор 0,1 мкФ не нужен. А если этот фильтр использовать в схеме простого радиотракта , то и резистор можно исключить.

Теперь из оставшейся кучи кварцев нам надо подобрать подходящий для опорного генератора. Если к указанным на схеме номиналам мы подберем кварц на 455 кГц, то на выходе фильтра получим нижнюю боковую полосу, если на 454 кГц – верхнюю. Если кварцев больше не осталось, то вполне возможно собрать опорный генератор по схеме емкостной трехточки и, подбирая его частоту, настроить получившийся фильтр. При этом генератор должен быть выполнен с повышенными мерами в части его термостабильности.

Настройку можно производить даже на слух, по несущим радиостанций, но это удовольствие оставим для более-менее опытных «музыкантов». Для настройки хорошо бы иметь звуковой генератор и осциллограф. Подаем сигнал со звукового генератора частотой 3 – 3,3 кГц на микрофонный усилитель (предположим, что фильтр уже стоит в схеме передатчика), подключаем осциллограф на выход фильтра и сдвигаем частоту опорного генератора до тех пор, пока выходной уровень сигнала после фильтра не уменьшится минимально. Далее проверяем нижнюю границу пропускания фильтра, подавая на микрофонный вход частоту 300 Гц со звукового генератора. Кстати, для повышения нижней границы пропускаемой полосы микрофонного усилителя по звуковым частотам, достаточно установить переходные конденсаторы емкостью около 6800 пФ и менее, а для верхней границы в любом случае хорошо бы установить хотя бы однозвенный ФНЧ.

Вот и все. Как видите, вы не понесете больших затрат при изготовлении данного фильтра, а сигнал получится достаточно презентабельный. Конечно, из-за простоты применить его в передатчиках второй категории уже нежелательно, но для 1,8 – 7 МГц его будет более чем достаточно. По результатам измерений эта классическая конструкция полностью совпадает с описанным в справочниках (к примеру, Справочник коротковолновика Бунина и Яйленко) - нижняя часть характеристики несколько затянута. Затухание в полосе пропускания - около 1 - 2 дБ, оно зависит от качества примененных резонаторов. Но если вы найдете еще более дешевый способ выйти в эфир с SSB (кроме фазового) - сообщите

Улучшение АЧХ "Ленинградского" кварцевого фильтра

С. Попов RA6CS



error: