Цвет пламени алюминия. Окрашивание пламени как один из методов аналитической химии

Нетрудно догадаться, что оттенок пламени определяется химическими веществами, сгорающими в нем, в том случае, если воздействие высокой температуры высвобождает отдельные атомы сгораемых веществ, окрашивая огонь. Чтобы определить влияние веществ на цвет огня, проводились различные эксперименты, о которых поговорим ниже.

С древних времен алхимики и ученые старались узнать, какие вещества сгорают, в зависимости от цвета, который приобретало пламя.

Пламя газовых колонок и плит, имеющихся во всех домах и квартирах, имеет голубой оттенок. Такой оттенок при сгорании дает углерод, угарный газ. Желто-оранжевый цвет пламени костра, который разводят в лесу, или бытовых спичек, обусловлен высоким содержанием солей натрия в природной древесине. Во многом благодаря этому - красный. Пламя конфорки газовой плиты приобретет тот же цвет, если посыпать ее обыкновенной поваренной солью. При горении меди пламя будет зеленого цвета. Думаю, вы замечали, что при долгой носке кольца или цепочки из обычной меди, не покрытой защитным составом, кожа становится зеленого оттенка. То же самое происходит при процессе горения. Если содержание меди высокое, имеет место очень яркий зеленый огонь, практически идентичный белому. Это можно увидеть, если насыпать на газовую конфорку медной стружки.

Было проведено много экспериментов с участием обыкновенной газовой горелки и различных минералов. Таким образом определялся их состав. Нужно взять минерал пинцетом и поместить в пламя. Цвет, который приобретет огонь, может указать на различные примеси, имеющиеся в элементе. Пламя зеленого цвета и его оттенков говорит о присутствии меди, бария, молибдена, сурьмы, фосфора. Бор дает сине-зеленый цвет. Селен придает пламени синий оттенок. В красный пламя окрашивается при наличии стронция, лития и кальция, в фиолетовый - калия. Желто-оранжевый цвет получается во время горения натрия.

Исследования минералов для определения их состава проводятся с использованием бунзеновской горелки. Цвет ее пламени ровный и бесцветный, он не мешает ходу опыта. Бунзен изобрел горелку в середине XIX века.

Он и придумал метод, позволяющий определить состав вещества по оттенку пламени. Подобные эксперименты ученые пытались проводить и до него, но они не обладали бунзеновской горелкой, бесцветное пламя которой не мешало ходу эксперимента. Он помещал в огонь горелки разные элементы на проволоке из платины, так как при внесении этого металла пламя не окрашивается. На первый взгляд метод кажется хорошим, можно обойтись без трудоемкого химического анализа. Достаточно лишь поднести элемент к огню и увидеть из чего он состоит. Но вещества в чистом виде можно встретить в природе крайне редко. Обычно в них в большом количестве содержатся различные примеси, которые изменяют окраску пламени.

Бунзен пытался выделить цвета и оттенки различными методами. К примеру, с помощью цветных стекол. Допустим, если смотреть через синее стекло, не будет виден желтый цвет, в который огонь окрашивается при горении наиболее часто встречающихся солей натрия. Тогда становится различимым лиловый или малиновый оттенок искомого элемента. Но даже такие ухищрения приводили к верному определению состава сложного минерала в очень редких случаях. Большего такая технология не смогла добиться.

В наши дни такую горелку используют только для пайки.

Алюминий - горючий металл, атомная масса 26,98; плотность 2700 кг/м 3 , температура плавления 660,1 °С; температура кипения 2486 °С; теплота cгopания -31087 кДж/кг. Алюминиевая стружка и пыль могут загораться при местном действии малокалорийных источников зажигания (пламени спички, искры и др.). При взаимодействии алюминиевого порошка, стружки, фольги с влагой образуется оксид алюминия и выделяется большое количество тепла, приводящее к их самовозгоранию при скоплении в кучах. Этому процессу способствует загрязненность указанных материалов маслами. Выделение свободного водорода при взаимодействии алюминиевой пыли с влагой облегчает ее взрыв. Температура самовоспламенения образца алюминиевой пыли дисперсностью 27 мкм 520 °С; температура тления 410 °С; нижний концентрационный предел распространения пламени 40 г/м 3 ; максимальное давление взрыва 1,3 МПа; скорость нарастания давления: средняя 24,1 МПа/с, максимальна 68,6 МПа/с. Предельная концентрация кислорода, при которой исключается воспламенение аэровзвеси электрической искрой, 3% объема. Осевшая пыль пожароопасна. Температура самовоспламенения 320 °С. Алюми­ний легко взаимодействует при комнатной температуре с водными растворами щелочей и аммиака с выделением водорода. Смешивание алюминиевого порошка с щелочным водным раствором может привести к взрыву. Энергично реагирует со многими металлоидами. Алюминиевая стружка горит, например, в броме, образуя бромид алюминия. Взаимодействие алюминия с хлором и бромом происходит при комнатной температуре, с йодом - при нагревании. При нагревании алюминий соединяется с серой. Если в пары кипящей серы всыпать порошок алюминия, то алюминий загорается. Сильно измельченный алюминий вступает в реакцию с галоидированными углеводородами; присутствующий в небольшом количестве хлорид алюминия (образую­щийся в процессе этой реакции) действует как катализатор, уско­ряя реакцию, в ряде случаев приводящую к взрыву. Такое явление наблюдается при нагревании порошка алюминия с хлористым ме­тилом, четыреххлористым углеродом, смесью хлороформа и четыреххлористого углерода до температуры около 150 °С.

Алюминий в виде компактного материала не взаимодействует с четыреххлористым углеродом. Смешивание алюминиевой пыли с некоторыми хлорированными углеводородами и спиртом приводит к самовозгоранию смеси. Смесь алюминиевого порошка с оксидом меди, оксидом серебра, оксидом свинца и особенно диоксидом свинца горит со взрывом. Смесь нитрата аммония, алюминиевого порошка с углем или нитросоединениями - взрывчатое вещество. Средства тушения: сухой песок, глинозем, магнезитовый порошок, асбестовое одеяло. Применять воду и огнетушители запрещается.

В чистом виде алюминий в природе не встречается, потому что очень быстро окисляется кислородом воздуха с образованием прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе, которые характеризуются сочетанием удовлетворительной прочности, хорошей пластичности, очень хорошей свариваемости и коррозионной стойкости. Кроме того, эти сплавы отличаются высокой вибростойкостью.

Дылдина Юлия

Пламя может иметь разный цвет, все зависит лишь от соли металла, которую в нее добаляют.

Скачать:

Предварительный просмотр:

МАОУ СОШ № 40

Тема

Окрашивание пламени как один из методов аналитической химии.

Дылдина Юдия,

9г кл., МАОУ СОШ № 40

Руководитель:

Гуркина Светлана Михайловна,

Учитель биологии и химии.

Пермь, 2015

  1. Введение.
  2. Глава 1 Аналитическая химия.
  3. Глава 2 Методы аналитической химии.
  4. Глава 3 Реакции окрашивания пламени.
  5. Заключение.

Введение.

С самого раннего детства меня завораживала работа ученых-химиков. Они казались волшебниками, которые познав какие-то скрытые законы природы, творили неведомое. В руках этих волшебников вещества меняли цвет, загорались, нагревали или охлаждались, взрывались. Когда я пришла на уроки химии, то занавеса начала приподниматься, и я начала понимать, как происходят химические процессы. Пройденного курса химии мне оказалось мало, поэтому я решила поработать над проектом. Хотелось, чтобы тема, над которой я работаю, была содержательной, помогла лучше подготовиться к экзамену по химии и удовлетворила мою тягу к красивым и ярким реакциям.

Окрашивание пламени ионами металлов в разные цвета мы изучаем еще на уроках химии, когда проходим щелочные металлы. Когда я заинтересовалась этой темой, оказалось, что в данном случае, она не раскрыта до конца. Я решила изучить ее более подробно.

Цель: с помощью данной работы я хочу научиться определять качественный состав некоторых солей.

Задачи:

  1. Познакомиться с аналитической химией.
  2. Изучить методы аналитической химии и выбрать наиболее приемлемый для моей работы.
  3. С помощью эксперимента определить какой металл входит в состав соли.

Глава 1.

Аналитическая химия.

Аналитическая химия - раздел химии, изучающий химический состав и отчасти структуру веществ.

Цель данной науки заключается в определении химических элементов или групп элементов, входящих в состав веществ.

Предмет её изучения является совершенствование существующих и разработка новых методов анализа, поиск возможностей их практического применения, исследование теоретических основ аналитических методов.

В зависимости от задачи методов различают качественный и количественный анализ.

  1. Качественный анализ - совокупность химических, физико-химических и физических методов, применяемых для обнаружения элементов, радикалов и соединений, входящих в состав анализируемого вещества или смеси веществ. В качественном анализе можно использовать легко выполнимые, характерные химические реакции, при которых наблюдается появление или исчезновение окрашивания, выделение или растворение осадка, образование газа и др. Такие реакции называют качественными и с помощью них можно с легкостью проверить состав вещества.

Качественный анализ чаще всего проводят в водных растворах. Он основан на ионных реакциях и позволяет обнаружить катионы или анионы веществ, которые там содержатся. Основоположником такого анализа считается Роберт Бойль. Он ввёл это представление о химических элементах как о не разлагаемых основных частях сложных веществ, после чего он систематизировал все известные в его время качественные реакции.

  1. Количественный анализ - совокупность химических, физико-химических и физических методов определения соотношения компонентов, входящих в состав

анализируемого вещества. По результатам этого можно определить константы равновесия, произведения растворимости, молекулярные и атомные массы. Такой анализ выполнять сложнее, так как он требует аккуратного и более кропотливого подхода, в ином случае результаты могут давать высокие погрешности и работа будет сведена к нулю.

Количественному анализу обычно предшествует качественный анализ.

Глава 2.

Методы химического анализа.

Методы химического анализа делят на 3 группы.

  1. Химические методы основаны на химических реакциях.

В данном случае для анализа можно использовать только такие реакции, которые сопровождаются наглядным внешним эффектом, например изменением окраски раствора, выделением газов, выпадением или растворением осадков и т. п. Эти внешние эффекты и послужат в данном случае аналитическими сигналами. Происходящие химические изменения называют аналитическими реакциями, а вещества, вызывающие эти реакции - химическими реагентами.

Все химические методы делят на две группы:

  1. Реакцию проводят в растворе, так называемым «мокрым путем».
  2. Способ выполнения анализа с твердыми веществами без использования растворителей, такой способ называют «сухим путем». Он делится на пирохимический анализ и анализ методом растирания. При пирохимическом анализе и сследуемое вещество нагревают в пламени газовой горелки. При этом летучие соли (хлориды, нитраты, карбонаты) ряда металлов придают пламени определенную окраску. Другой прием пиротехнического анализа-получение окрашенных перлов (стекол). Для получения перлов соли и оксиды металлов сплавляют с тетраборатом натрия (Na2 В4О7" 10Н2О) или гидрофосфатом натрия-аммония (NaNH4HP04 4Н20) и наблюдают окраску образующихся стекол (перлов).
  3. Метод растирания был предложен в 1898 г. Ф. М. Флавицким. Твердое исследуемое вещество растирают с твердым реагентом, при этом наблюдают внешний эффект. Например, соли кобальта с тиоцианатом аммония могут дать синее окрашивание.
  1. При анализе физическими методами изучают физические свойства вещества с помощью приборов, не прибегая к химическим реакциям. К физическим методам можно отнести спектральный анализ, люминесцентный, рентгеноструктурный и другие способы анализов.
  2. С помощью физико-химических методов изучают физические явления, которые происходят в химических реакциях. Например, при колориметрическом методе измеряют интенсивность окраски в зависимости от концентрации вещества, в кондуктометрическом анализе измеряют изменение электрической проводимости растворов.

Глава 3.

Лабораторная работа.

Реакции окрашивания пламени.

Цель: Изучить окрашивания пламени спиртовки ионами металлов.

В своей работе я решила воспользоваться методом пиротехнического анализа окрашивания пламени ионами металлов.

Исследуемые вещества: соли металлов (фторид натрия, хлорид лития, сульфат меди, хлорид бария, хлорид кальция, сульфат стронция, хлорид магния, сульфат свинца).

Оборудование: фарфоровые чашки, этиловый спирт, стеклянная палочка, концентрированная соляная кислота.

Для проведения работы, я делала раствор соли в этиловом спирте, а затем поджигала. Свой опыт я провела несколько раз, на последнем этапе были отобраны наилучшие образцы, поле чего мы сделали видео.

Выводы:

    Летучие соли многих металлов окрашивают пламя в различные цвета, характерные для этих металлов. Окраска зависит от раскаленных паров свободных металлов, которые получаются в результате термического разложения солей при внесении их в пламя горелки. В моем случае к таким солям относились, фторид натрия и хлорид лития, они дали яркие насыщенные цвета.

Заключение.

Химический анализ используется человеком в очень многих областях, на уроках же химии мы знакомимся лишь с небольшой областью этой сложной науки. Приемы, которые используются в пирохимическом анализе, используются в качественном анализе как предварительное испытание при анализе смеси сухих веществ или как проверочные реакции. В качественном анализе реакции «сухим» путем играют только вспомогательную роль, их используют обычно в качестве первичных испытаний и проведения проверочных реакций.

Кроме того, данные реакции используются человеком и в других отраслях, к примеру в фейерверках. Как мы знаем, фейерверк это декоративные огни разнообразных цветов и форм, получаемые при сжигании пиротехнических составов. Так вот в состав фейерверка пиротехники добавляют разнообразные горючие вещества, среди которых широко представлены неметаллические элементы (кремний, бор, сера). В процессе окисления бора и кремния выделяется большое количество энергии, но не образуются газовые продукты, поэтому эти вещества применяются для изготовления взрывателей замедленного действия (чтобы воспламенить другие составы в определенное время). Многие смеси включают органические углеродсодержащие материалы. Например, древесный уголь (применяется в дымном порохе, снарядах для фейерверков) или сахар (дымовые гранаты). Используются химически активные металлы (алюминий, титан, магний), чье горение при высокой температуре дает яркий свет. Это их свойство стали использовать для запуска фейерверков.

В процессе работы, я поняла насколько сложно и важно работать с веществами, не все удалось в полной мере, как бы хотелось. Как правило, на уроках химии не хватает практикой работы, благодаря которой отрабатываются теоретические навыки. Проект помог мне развить этот навык. Кроме того, я с большим удовольствием познакомила, своих одноклассников с результатами своей работы. Это помогло им закрепить теоретический знания.

химический элемент III группы периодической системы, атомный номер 13, относительная атомная масса 26,98. В природе представлен лишь одним стабильным нуклидом 27 Al. Искусственно получен ряд радиоактивных изотопов алюминия, наиболее долгоживущий – 26 Al имеет период полураспада 720 тысяч лет. Алюминий в природе. В земной коре алюминия очень много: 8,6% по массе. Он занимает первое место среди всех металлов и третье среди других элементов (после кислорода и кремния). Алюминия вдвое больше, чем железа, и в 350 раз больше, чем меди, цинка, хрома, олова и свинца вместе взятых! Как писал более 100 лет назад в своем классическом учебнике Основы химии Д.И.Менделеев , из всех металлов «алюминий есть самый распространенный в природе; достаточно указать на то, что он входит в состав глины, чтоб ясно было всеобщее распространение алюминия в коре земной. Алюминий, или металл квасцов (alumen), потому и называется иначе глинием, что находится в глине».

Важнейший минерал алюминия – боксит, смесь основного оксида AlO(OH) и гидроксида Al(OH)

3 . Крупнейшие месторождения боксита находятся в Австралии, Бразилии, Гвинее и на Ямайке; промышленная добыча ведется и в других странах. Богаты алюминием также алунит (квасцовый камень) (Na,K) 2 SO 4 ·Al 2 (SO 4) 3 ·4Al(OH) 3 , нефелин (Na,K) 2 O·Al 2 O 3 ·2SiO 2 . Всего же известно более 250 минералов, в состав которых входит алюминий; большинство из них – алюмосиликаты, из которых и образована в основном земная кора. При их выветривании образуется глина, основу которой составляет минерал каолинит Al 2 O 3 ·2SiO 2 ·2H 2 O. Примеси железа обычно окрашивают глину в бурый цвет, но встречаются и белая глина – каолин, которую применяют для изготовления фарфоровых и фаянсовых изделий. См. также БОКСИТЫ.

Изредка встречается исключительно твердый (уступает лишь алмазу) минерал корунд – кристаллический оксид Al

2 O 3 , часто окрашенный примесями в разные цвета. Его синяя разновидность (примесь титана и железа) называется сапфиром, красная (примесь хрома) – рубином. Разные примеси могут окрашивать так называемый благородный корунд также в зеленый, желтый, оранжевый, фиолетовый и другие цвета и оттенки.

Еще недавно считалось, что алюминий как весьма активный металл не может встречаться в природе в свободном состоянии, однако в 1978 в породах Сибирской платформы был обнаружен самородный алюминий – в виде нитевидных кристаллов длиной всего 0,5 мм (при толщине нитей несколько микрометров). В лунном грунте, доставленном на Землю из районов морей Кризисов и Изобилия, также удалось обнаружить самородный алюминий. Предполагают, что металлический алюминий может образоваться конденсацией из газа. Известно, что при нагревании галогенидов алюминия – хлорида, бромида, фторида они могут с большей или меньшей легкостью испаряться (так, AlCl

3 возгоняется уже при 180° C). При сильном повышении температуры галогениды алюминия разлагаются, переходя в состояние с низшей валентностью металла, например, AlCl. Когда при понижении температуры и отсутствии кислорода такое соединение конденсируется, в твердой фазе происходит реакция диспропорционирования: часть атомов алюминия окисляется и переходит в привычное трехвалентное состояние, а часть – восстанавливается. Восстановиться же одновалентный алюминий может только до металла: 3AlCl ® 2Al + AlCl 3 . В пользу этого предположения говорит и нитевидная форма кристаллов самородного алюминия. Обычно кристаллы такого строения образуются вследствие быстрого роста из газовой фазы. Вероятно, микроскопические самородки алюминия в лунном грунте образовались аналогичным способом.

Название алюминия происходит от латинского alumen (род. падеж aluminis). Так называли квасцы, двойной сульфат калия-алюминия KAl(SO

4) 2 ·12H 2 O) , которые использовали как протраву при крашении тканей. Латинское название, вероятно, восходит к греческому «халмэ» – рассол, соляной раствор. Любопытно, что в Англии алюминий – это aluminium, а в США – aluminum.

Во многих популярных книгах по химии приводится легенда о том, что некий изобретатель, имя которого история не сохранила, принес императору Тиберию, правившему Римом в 14–27 н.э., чашу из металла, напоминающего цветом серебро, но более легкого. Этот подарок стоил жизни мастеру: Тиберий приказал казнить его, а мастерскую уничтожить, поскольку боялся, что новый металл может обесценить серебро в императорской сокровищнице.

Эта легенда основана на рассказе Плиния Старшего , римского писателя и ученого, автора Естественной истории – энциклопедии естественнонаучных знаний античных времен. Согласно Плинию, новый металл был получен из «глинистой земли». А ведь глина действительно содержит алюминий.

Современные авторы почти всегда делают оговорку, что вся эта история – не более чем красивая сказка. И это не удивительно: алюминий в горных породах чрезвычайно прочно связан с кислородом, и для его выделения необходимо затратить очень много энергии. Однако в последнее время появились новые данные о принципиальной возможности получения металлического алюминия в древности. Как показал спектральный анализ, украшения на гробнице китайского полководца Чжоу-Чжу, умершего в начале III в. н.э., сделаны из сплава, на 85% состоящего из алюминия. Могли ли древние получить свободный алюминий? Все известные способы (электролиз, восстановление металлическим натрием или калием) отпадают автоматически. Могли ли в древности найти самородный алюминий, как, например, самородки золота, серебра, меди? Это тоже исключено: самородный алюминий – редчайший минерал, который встречается в ничтожных количествах, так что древние мастера никак не могли найти и собрать в нужном количестве такие самородки.

Однако возможно и другое объяснение рассказа Плиния. Алюминий можно восстановить из руд не только с помощью электричества и щелочных металлов. Существует доступный и широко используемый с древних времен восстановитель – это уголь, с помощью которого оксиды многих металлов при нагревании восстанавливаются до свободных металлов. В конце 1970-х немецкие химики решили проверить, могли ли в древности получить алюминий восстановлением углем. Они нагрели в глиняном тигле до красного каления смесь глины с угольным порошком и поваренной солью или поташом (карбонатом калия). Соль была получена из морской воды, а поташ – из золы растений, чтобы использовать только те вещества и методы, которые были доступны в древности. Через некоторое время на поверхности тигля всплыл шлак с шариками алюминия! Выход металла был мал

, но не исключено, что именно этим путем древние металлурги могли получить «металл 20 века». Свойства алюминия. По цвету чистый алюминий напоминает серебро, это очень легкий металл: его плотность всего 2,7 г/см 3 . Легче алюминия только щелочные и щелочноземельные металлы (кроме бария), бериллий и магний. Плавится алюминий тоже легко – при 600° С (тонкую алюминиевую проволоку можно расплавить на обычной кухонной конфорке), зато кипит лишь при 2452° С. По электропроводности алюминий – на 4-м месте, уступая лишь серебру (оно на первом месте), меди и золоту, что при дешевизне алюминия имеет огромное практическое значение. В таком же порядке изменяется и теплопроводность металлов. В высокой теплопроводности алюминия легко убедиться, опустив алюминиевую ложечку в горячий чай. И еще одно замечательное свойство у этого металла: его ровная блестящая поверхность прекрасно отражает свет: от 80 до 93% в видимой области спектра в зависимости от длины волны. В ультрафиолетовой области алюминию в этом отношении вообще нет равных, и лишь в красной области он немного уступает серебру (в ультрафиолете серебро имеет очень низкую отражательную способность).

Чистый алюминий – довольно мягкий металл – почти втрое мягче меди, поэтому даже сравнительно толстые алюминиевые пластинки и стержни легко согнуть, но когда алюминий образует сплавы (их известно огромное множество), его твердость может возрасти в десятки раз.

Характерная степень окисления алюминия +3, но благодаря наличию незаполненных 3р - и 3

d -орбиталей атомы алюминия могут образовывать дополнительные донорно-акцепторные связи. Поэтому ион Al 3+ с небольшим радиусом весьма склонен к комплексообразованию, образуя разнообразные катионные и анионные комплексы: AlCl 4 – , AlF 6 3– , 3+ , Al(OH) 4 – , Al(OH) 6 3– , AlH 4 – и многие другие. Известны комплексы и с органическими соединениями.

Химическая активность алюминия весьма высока; в ряду электродных потенциалов он стоит сразу за магнием. На первый взгляд такое утверждение может показаться странным: ведь алюминиевая кастрюля или ложка вполне устойчивы на воздухе, не разрушаются и в кипящей воде. Алюминий, в отличие от железа, не ржавеет. Оказывается, на воздухе металл покрывается бесцветной тонкой, но прочной «броней» из оксида, которая защищает металл от окисления. Так, если внести в пламя горелки толстую алюминиевую проволоку или пластинку толщиной 0,5–1 мм, то металл плавится, но алюминий не течет, так как остается в мешочке из его оксида. Если лишить алюминий защитной пленки или сделать ее рыхлой (например, погружением в раствор ртутных солей), алюминий тут же проявит свою истинную сущность: уже при комнатной температуре начнет энергично реагировать с водой с выделением водорода: 2Al + 6H

2 O ® 2Al(OH) 3 + 3H 2 . На воздухе лишенный защитной пленки алюминий прямо на глазах превращается в рыхлый порошок оксида: 2Al + 3O 2 ® 2Al 2 O 3 . Особенно активен алюминий в мелкораздробленном состоянии; алюминиевая пыль при вдувании в пламя моментально сгорает. Если смешать на керамической пластинке алюминиевую пыль с пероксидом натрия и капнуть на смесь водой, алюминий также вспыхивает и сгорает белым пламенем.

Очень высокое сродство алюминия к кислороду позволяет ему «отнимать» кислород от оксидов ряда других металлов, восстанавливая их (метод алюминотермии). Самый известный пример – термитная смесь, при горении которой выделяется так много тепла, что полученное железо расплавляется: 8Al + 3Fe

3 O 4 ® 4Al 2 O 3 + 9Fe. Эта реакция была открыта в 1856 Н.Н.Бекетовым. Таким способом можно восстановить до металлов Fe 2 O 3 , CoO, NiO, MoO 3 , V 2 O 5 , SnO 2 , CuO, ряд других оксидов. При восстановлении же алюминием Cr 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , TiO 2 , ZrO 2 , B 2 O 3 теплоты реакции недостаточно для нагрева продуктов реакции выше их температуры плавления.

Алюминий легко растворяется в разбавленных минеральных кислотах с образованием солей. Концентрированная азотная кислота, окисляя поверхность алюминия, способствует утолщению и упрочнению оксидной пленки (так называемая пассивация металла). Обработанный таким образом алюминий не реагирует даже с соляной кислотой. С помощью электрохимического

анодного окисления (анодирования) на поверхности алюминия можно создать толстую пленку, которую нетрудно окрасить в разные цвета.

Вытеснение алюминием из растворов солей менее активных металлов часто затруднено защитной пленкой на поверхности алюминия. Эта пленка быстро разрушается хлоридом меди, поэтому легко идет реакция 3CuCl

2 + 2Al ® 2AlCl 3 + 3Cu, которая сопровождается сильным разогревом. В крепких растворах щелочей алюминий легко растворяется с выделением водорода: 2Al + 6NaOH + 6Н 2 О ® 2Na 3 + 3H 2 (образуются и другие анионные гидроксо-комплексы). Амфотерный характер соединений алюминия проявляется также в легком растворении в щелочах его свежеосажденного оксида и гидроксида. Кристаллический оксид (корунд) весьма устойчив к действию кислот и щелочей. При сплавлении со щелочами образуются безводные алюминаты: Al 2 O 3 + 2NaOH ® 2NaAlO 2 + H 2 O. Алюминат магния Mg(AlO 2) 2 – полудрагоценный камень шпинель, обычно окрашенный примесями в самые разнообразные цвета.

Бурно протекает реакция алюминия с галогенами. Если в пробирку с 1 мл брома внести тонкую алюминиевую проволоку, то через короткое время алюминий загорается и горит ярким пламенем. Реакция смеси порошков алюминия и иода инициируется каплей воды (вода с иодом образует кислоту, которая разрушает оксидную пленку), после чего появляется яркое пламя с клубами фиолетовых паров иода. Галогениды алюминия в водных растворах имеют кислую реакцию из-за гидролиза: AlCl

3 + H 2 O Al(OH)Cl 2 + HCl. Реакция алюминия с азотом идет только выше 800° С с образованием нитрида AlN, с серой – при 200° С (образуется сульфид Al 2 S 3 ), с фосфором – при 500° С (образуется фосфид AlP). При внесении в расплавленный алюминий бора образуются бориды состава AlB 2 и AlB 12 – тугоплавкие соединения, устойчивые к действию кислот. Гидрид (AlH) х (х = 1,2) образуется только в вакууме при низких температурах в реакции атомарного водорода с парами алюминия. Устойчивый в отсутствие влаги при комнатной температуре гидрид AlH 3 получают в растворе безводного эфира: Al Cl 3 + LiH ® AlH 3 + 3LiCl. При избытке LiH образуется солеобразный алюмогидрид лития LiAlH 4 – очень сильный восстановитель, применяющийся в органических синтезах. Водой он мгновенно разлагается: LiAlH 4 + 4H 2 O ® LiOH + Al(OH) 3 + 4H 2 . Получение алюминия. Документально зафиксированное открытие алюминия произошло в 1825. Впервые этот металл получил датский физик Ганс Христиан Эрстед , когда выделил его при действии амальгамы калия на безводный хлорид алюминия (полученный при пропускании хлора через раскаленную смесь оксида алюминия с углем). Отогнав ртуть, Эрстед получил алюминий, правда, загрязненный примесями. В 1827 немецкий химик Фридрих Вёлер получил алюминий в виде порошка восстановлением гексафторалюмината калием: Na 3 AlF 6 + 3K ® Al + 3NaF + 3KF. Позднее ему удалось получить алюминий в виде блестящих металлических шариков. В 1854 французский химик Анри Этьен Сент-Клер Девилль разработал первый промышленный способ получения алюминия – восстановлением расплава тетрахлоралюминиата натрием: NaAlCl 4 + 3Na ® Al + 4NaCl. Тем не менее, алюминий продолжал оставаться чрезвычайно редким и дорогим металлом; он стоил ненамного дешевле золота и в 1500 раз дороже железа (сейчас – только втрое). Из золота, алюминия и драгоценных камней была сделана в 1850-х погремушка для сына французского императора Наполеона III . Когда в 1855 на Всемирной выставке в Париже был выставлен большой слиток алюминия, полученный новым способом, на него смотрели, как на драгоценность. Из драгоценного алюминия сделали верхнюю часть (в виде пирамидки) памятника Вашингтону в столице США. В то время алюминий был ненамного дешевле серебра: в США, например, в 1856 он продавался по цене 12 долл. за фунт (454 г), а серебро – по 15 долл. В изданном в 1890 1-м томе знаменитого Энциклопедического словаря Брокгауза и Ефрона говорилось, что «алюминий до сих пор служит преимущественно для выделки... предметов роскоши». К тому времени во всем мире ежегодно добывалось всего 2,5 т. металла. Лишь к концу 19 в., когда был разработан электролитический способ получения алюминия, его ежегодное производство начало исчисляться тысячами тонн, а в 20 в. – млн. тонн. Это сделало алюминий из полудрагоценного широко доступным металлом.

Современный способ получения алюминия был открыт в 1886 молодым американским исследователем Чарлзом Мартином Холлом . Химией он увлекся еще в детстве. Найдя старый учебник химии своего отца, он начал усердно штудировать его, а также ставить опыты, однажды даже получил нагоняй от матери за порчу обеденной скатерти. А спустя 10 лет он сделал выдающееся открытие, прославившее его на весь мир.

Став в 16 лет студентом, Холл услышал от своего преподавателя, Ф.Ф.Джуэтта, что если кому-нибудь удастся разработать дешевый способ получения алюминия, то этот человек не только окажет огромную услугу человечеству, но и заработает огромное состояние. Джуэтт знал, что говорил: ранее он стажировался в Германии, работал у Вёлера, обсуждал с ним проблемы получения алюминия. С собой в Америку Джуэтт привез и образец редкого металла, который показал ученикам. Неожиданно Холл заявил во всеуслышание: «Я получу этот металл!»

Шесть лет продолжалась упорная работа. Холл пытался получать алюминий разными методами, но безуспешно. Наконец, он попробовал извлечь этот металл электролизом. В то время электростанций не было, ток приходилось получать с помощью больших самодельных батарей из угля, цинка, азотной и серной кислот. Холл работал в сарае, где устроил маленькую лабораторию. Ему помогала сестра Джулия, которая очень интересовалась опытами брата. Она сохранила все его письма и рабочие журналы, которые позволяют буквально по дням проследить историю открытия. Вот выдержка из ее воспоминаний:

«Чарлз всегда был в хорошем настроении, и даже в самые плохие дни был способен посмеяться над судьбой незадачливых изобретателей. В часы неудач он находил утешение за нашим стареньким пианино. В своей домашней лаборатории он работал по-многу часов без перерыва; а когда он мог ненадолго оставить установку, то мчался через весь наш длинный дом, чтобы немного поиграть... Я знала, что, играя с таким

обаянием и чувством, он постоянно думает о своей работе. И музыка ему в этом помогала.»

Самым трудным было подобрать электролит и защитить алюминий от окисления. Через шесть месяцев изнурительного труда в тигле, наконец, появилось несколько маленьких серебристых шариков. Холл немедленно побежал к своему бывшему преподавателю, чтобы рассказать об успехе. «Профессор, я получил его!», – воскликнул он, протягивая руку: на ладони лежал десяток маленьких алюминиевых шариков. Это произошло 23 февраля 1886. А спустя ровно два месяца, 23 апреля того же года, француз Поль Эру взял патент на аналогичное изобретение, которое он сделал независимо и почти одновременно (поразительны и два других совпадения: и Холл, и Эру родились в 1863 и умерли в 1914).

Сейчас первые шарики алюминия, полученные Холлом, хранятся в Американской Алюминиевой компании в Питтсбурге как национальная реликвия, а в его колледже стоит памятник Холлу, отлитый из алюминия. Впоследствии Джуэтт писал: «Моим самым важным открытием было открытие человека

. Это был Чарлз М.Холл, который в возрасте 21 года открыл способ восстановления алюминия из руды, и таким образом сделал алюминий тем замечательным металлом, которым теперь широко пользуются во всем мире». Пророчество Джуэтта сбылось: Холл получил широкое признание, стал почетным членом многих научных обществ. Но личная жизнь ему не удалась: невеста не хотела смириться с тем, что ее жених все время проводит в лаборатории, и расторгла помолвку. Холл нашел утешение в родном колледже, где он проработал до конца жизни. Как писал брат Чарлза, «колледж был для него и женой, и детьми, и всем остальным – всю его жизнь». Колледжу Холл завещал и б?льшую часть своего наследства – 5 млн. долл. Умер Холл от лейкемии в возрасте 51 года.

Метод Холла позволил получать с помощью электричества сравнительно недорогой алюминий в больших масштабах. Если с 1855 до 1890 было получено лишь 200 тонн алюминия, то за следующее десятилетие по методу Холла во всем мире получили уже 28 000 т этого металла! К 1930 мировое ежегодное производство алюминия достигло 300 тыс. тонн. Сейчас же ежегодно получают более 15 млн. т. алюминия. В специальных ваннах при температуре 960–970° С подвергают электролизу раствор глинозема (технический Al

2 O 3 ) в расплавленном криолите Na 3 AlF 6 , который частично добывают в виде минерала, а частично специально синтезируют. Жидкий алюминий накапливается на дне ванны (катод), кислород выделяется на угольных анодах, которые постепенно обгорают. При низком напряжении (около 4,5 В) электролизеры потребляют огромные токи – до 250 000 А! За сутки один электролизер дает около тонны алюминия. Производство требует больших затрат электроэнергии: на получение 1 тонны металла затрачивается 15000 киловатт-часов электроэнергии. Такое количество электричества потребляет большой 150-квартирный дом в течение целого месяца. Производство алюминия экологически опасно, так как атмосферный воздух загрязняется летучими соединениями фтора. Применение алюминия. Еще Д.И.Менделеев писал, что «металлический алюминий, обладая большою легкостью и прочностью и малою изменчивостью на воздухе, очень пригоден для некоторых изделий». Алюминий – один из самых распространенных и дешевых металлов. Без него трудно представить себе современную жизнь. Недаром алюминий называют металлом 20 века. Он хорошо поддается обработке: ковке, штамповке, прокату, волочению, прессованию. Чистый алюминий – довольно мягкий металл; из него делают электрические провода, детали конструкций, фольгу для пищевых продуктов, кухонную утварь и «серебряную» краску. Этот красивый и легкий металл широко используют в строительстве и авиационной технике. Алюминий очень хорошо отражает свет. Поэтому его используют для изготовления зеркал – методом напыления металла в вакууме.

В авиа- и машиностроении, при изготовлении строительных конструкций, используют значительно более твердые сплавы алюминия. Один из самых известных – сплав алюминия с медью и магнием (дуралюмин, или просто «дюраль»; название происходит от немецкого города Дюрена). Этот сплав после закалки приобретает особую твёрдость и становится примерно в 7 раз прочнее чистого алюминия. В то же время он почти втрое легче железа. Его получают, сплавляя алюминий с небольшими добавками меди, магния, марганца, кремния и железа. Широко распространены силумины – литейные сплавы алюминия с кремнием. Производятся также высокопрочные, криогенные (устойчивые к морозам) и жаропрочные сплавы. На изделия из алюминиевых сплавов легко наносятся защитные и декоративные покрытия. Легкость и прочность алюминиевых сплавов особенно пригодились в авиационной технике. Например, из сплава алюминия, магния и кремния делают винты вертолетов. Сравнительно дешевая алюминиевая бронза (до 11% Al) обладает высокими механическими свойствами, она устойчива в морской воде и даже в разбавленной соляной кислоте. Из алюминиевой бронзы в СССР с 1926 по 1957 чеканились монеты достоинством 1, 2, 3 и 5 копеек.

В настоящее время четвертая часть всего алюминия идет на нужды строительства, столько же потребляет транспортное машиностроение, примерно 17% часть расходуется на упаковочные материалы и консервные банки, 10% – в электротехнике.

Алюминий содержат также многие горючие и взрывчатые смеси. Алюмотол, литая смесь тринитротолуола с порошком алюминия, – одно из самых мощных промышленных взрывчатых веществ. Аммонал – взрывчатое вещество, состоящее из аммиачной селитры, тринитротолуола и порошка алюминия. Зажигательные составы содержат алюминий и окислитель – нитрат, перхлорат. Пиротехнические составы «Звездочки» также содержат порошкообразный алюминий.

Смесь порошка алюминия с оксидами металлов (термит) применяют для получения некоторых металлов и сплавов, для сварки рельсов, в зажигательных боеприпасах.

Алюминий нашел также практическое применение в качестве ракетного топлива. Для полного сжигания 1 кг алюминия требуется почти вчетверо меньше кислорода, чем для 1 кг керосина. Кроме того, алюминий может окисляться не только свободным кислородом, но и связанным, входящим в состав воды или углекислого газа. При «сгорании» алюминия в воде на 1 кг продуктов выделяется 8800 кДж; это в 1,8 раза меньше, чем при сгорании металла в чистом кислороде, но в 1,3 раза больше, чем при сгорании на воздухе. Значит, в качестве окислителя такого топлива можно использовать вместо опасных и дорогостоящих соединений простую воду. Идею использования алюминия в

качестве горючего еще в 1924 предложил отечественный ученый и изобретатель Ф.А.Цандер. По его замыслу можно использовать алюминиевые элементы космического корабля в качестве дополнительного горючего. Этот смелый проект пока практически не осуществлен, зато большинство известных в настоящее время твердых ракетных топлив содержат металлический алюминий в виде тонкоизмельченного порошка. Добавление 15% алюминия к топливу может на тысячу градусов повысить температуру продуктов сгорания (с 2200 до 3200 К); заметно возрастает и скорость истечения продуктов сгорания из сопла двигателя – главный энергетический показатель, определяющий эффективность ракетного топлива. В этом плане конкуренцию алюминию могут составить только литий, бериллий и магний, но все они значительно дороже алюминия.

Широкое применение находят и соединения алюминия. Оксид алюминия – огнеупорный и абразивный (наждак) материал, сырье для получения керамики. Из него также делают лазерные материалы, подшипники для часов, ювелирные камни (искусственные рубины). Прокаленный оксид алюминия – адсорбент для очистки газов и жидкостей и катализатор ряда органических реакций. Безводный хлорид алюминия – катализатор в органическом синтезе (реакция Фриделя – Крафтса), исходное вещество для получения алюминия высокой чистоты. Сульфат алюминия применяют для очистки воды; реагируя с содержащимся в ней гидрокарбонатом кальция:

Al 2 (SO 4) 3 + 3Ca(HCO 3) 2 ® 2AlO(OH) + 3CaSO 4 + 6CO 2 + 2H 2 O, он образует хлопья оксида-гидроксида, которые, оседая, захватывают, а также сорбируют на поверхности находящиеся в воде взвешенные примеси и даже микроорганизмы. Кроме того, сульфат алюминия применяют как протраву при крашении тканей, для дубления кожи, консервирования древесины, проклеивания бумаги. Алюминат кальция – компонент вяжущих материалов, в том числе портландцемента. Иттрий-алюминиевый гранат (ИАГ) YAlO 3 – лазерный материал. Нитрид алюминия – огнеупорный материал для электропечей. Синтетические цеолиты (они относятся к алюмосиликатам) – адсорбенты в хроматографии и катализаторы. Алюминийорганические соединения (например, триэтилалюминий) – компоненты катализаторов Циглера – Натты, которые используются для синтеза полимеров, в том числе синтетического каучука высокого качества.

Илья Леенсон

ЛИТЕРАТУРА Тихонов В.Н. Аналитическая химия алюминия . М., «Наука», 1971
Популярная библиотека химических элементов . М., «Наука», 1983
Craig N.C. Charles Martin Hall and his Metall. J.Chem.Educ . 1986, vol. 63, № 7
Kumar V., Milewski L. Charles Martin Hall and the Great Aluminium Revolution . J.Ch em.Educ., 1987, vol. 64, № 8 ЗАГЛЯНЕМ ЗА КУЛИСЫ

Чтобы сформулировать закономерности протекающих процессов, мы можем ограничиться рассмотрением катионов, а анионы исключить, так как они сами в реакции не участвуют. (Правда, на скорость осаждения влияет вид анионов.) Если для простоты предположить, что и выделяющийся и растворенный металлы двухвалентные, то можно записать:

Me 1 + Me 2 2+ => Ме 1 2+ + Ме 2

Причем для первого опыта Ме 1 = Fe, Me 2 = Сu. Итак, процесс состоит в обмене зарядами (электронами) между атомами и ионами обоих металлов. Если отдельно рассматривать (в качестве промежуточных реакций) растворение железа или осаждение меди, то получим:

Fe => Fe 2+ + 2е -
Сu 2+ + 2е - => Сu

Теперь рассмотрим случай, когда металл погружен в воду или в раствор соли, с катионом которой обмен невозможен из-за его положения в ряду напряжений. Несмотря на это, металл стремится перейти в раствор в виде иона. При этом атом металла отдает два электрона (если металл двухвалентный), поверхность погруженного в раствор металла заряжается по отношению к раствору отрицательно, а на границе раздела образуется двойной электрический слой. Эта разность потенциалов препятствует дальнейшему растворению металла, так что процесс вскоре приостанавливается. Если в раствор погрузить два различных металла, то они оба зарядятся, но менее активный - несколько слабее, в силу того, что его атомы менее склонны к отщеплению электронов. Соединим оба металла проводником. Вследствие разности потенциалов поток электронов потечет от более активного металла к менее активному, который образует положительный полюс элемента. Протекает процесс, при котором более активный металл переходит в раствор, а катионы из раствора выделяются на более благородном металле.

Сущность гальванического элемента

Проиллюстрируем теперь несколькими опытами приведенные выше несколько абстрактные рассуждения (которые к тому же представляют собой грубое упрощение).

Сначала наполним химический стакан вместимостью 250 мл до середины 10 %-ным раствором серной кислоты и погрузим в нее не слишком маленькие куски цинка и меди. К обоим электродам припаяем или приклепаем медную проволоку, концы которой не должны касаться раствора.

Пока концы проволоки не соединены друг с другом, мы будем наблюдать растворение цинка, которое сопровождается выделением водорода. Цинк, как следует из ряда напряжения, активнее водорода, поэтому металл может вытеснять водород из ионного состояния. На обоих металлах образуется двойной электрический слой. Разность потенциалов между электродами проще всего обнаружить с помощью вольтметра. Непосредственно после включения прибора в цепь стрелка укажет примерно 1 В, но затем напряжение быстро упадет. Если подсоединить к элементу маленькую лампочку, потребляющую напряжение 1 В, то она загорится - сначала довольно сильно, а затем накал станет слабым.

По полярности клемм прибора можно сделать вывод, что медный электрод является положительным полюсом. Это можно доказать и без прибора, рассмотрев электрохимию процесса. Приготовим в маленьком химическом стакане или в пробирке насыщенный раствор поваренной соли, добавим примерно 0,5 мл спиртового раствора индикатора фенолфталеина и погрузим оба замкнутых проволокой электрода в раствор. Около отрицательного полюса будет наблюдаться слабое красноватое окрашивание, которое вызвано образованием на катоде гидроксида натрия.

В других опытах можно помещать в ячейку различные пары металлов и определять возникающее напряжение. Например, магний и серебро дадут особенно большую разность потенциалов благодаря значительному расстоянию между ними ряду напряжений, а цинк и железо, наоборот, очень маленькую, менее десятой доли вольта. Применяя алюминий, мы не получим из-за пассивации практически никакого тока.

Все эти элементы, или, как говорят электрохимики, цепи, имеют тот недостаток, что при съемке тока на них очень быстро падает напряжение. Поэтому электрохимики всегда измеряют истинную величину напряжения в обесточенном состоянии с помощью метода компенсации напряжения , то есть сравнивая его с напряжением другого источника тока.

Рассмотрим процессы в медно-цинковом элементе несколько подробнее. На катоде цинк переходит в раствор по следующему уравнению:

Zn => Zn 2+ + 2е -

На медном аноде разряжаются ионы водорода серной кислоты. Они присоединяют электроны, поступающие по проволоке от цинкового катода и в результате образуются пузырьки водорода:

2Н + + 2е - => Н 2

Через короткий промежуток времени медь покроется тончайшим слоем пузырьков водорода. При этом медный электрод превратится в водородный, а разность потенциалов уменьшится. Этот процесс называют поляризацией электрода. Поляризацию медного электрода можно устранить, добавив в ячейку после падения напряжения немного раствора бихромата калия. После этого напряжение опять увеличится, так как бихромат калия окислит водород до воды. Бихромат калия действует в этом случае как деполяризатор.

На практике применяют гальванические цепи, электроды которых не поляризуются, или цепи, поляризацию которых можно устранить, добавив деполяризаторы.

В качестве примера неполяризуемого элемента рассмотрим элемент Даниэля, который раньше часто использовали как источник тока. Это тоже медно-цинковый элемент, но оба металла погружены в различные растворы. Цинковый электрод помещается в пористой глиняной ячейке, наполненной разбавленной (примерно 20 %-ной) серной кислотой. Глиняную ячейку подвешивают в большом стакане, в котором находится концентрированный раствор сульфата меди, а на дне - слой кристаллов сульфата меди. Вторым электродом в этом сосуде служит цилиндр из медного листа.

Этот элемент можно изготовить из стеклянной банки, имеющейся в продаже глиняной ячейки (в крайнем случае используем цветочный горшок, закрыв отверстие в дне) и двух подходящих по размеру электродов.

В процессе работы элемента цинк растворяется с образованием сульфата цинка, а на медном электроде выделяется металлическая медь. Но при этом медный электрод не поляризуется и элемент дает напряжение около 1 В. Собственно, теоретически напряжение на клеммах составляет 1,10 В, но при съеме тока мы измеряем несколько меньшую величину, вследствие электрического сопротивления ячейки.

Если мы не снимем ток с элемента, нужно вытащить цинковый электрод из раствора серной кислоты, потому что иначе он будет растворяться с образованием водорода.

Схема простой ячейки, для которой не требуется пористой перегородки, показана на рисунке. Цинковый электрод расположен в стеклянной банке наверху, а медный - вблизи дна. Вся ячейка наполнена насыщенным раствором поваренной соли. На дно банки насыплем горсть кристаллов сульфата меди. Образующийся концентрированный раствор сульфата меди будет смешиваться с раствором поваренной соли очень медленно. Поэтому при работе элемента на медном электроде будет выделяться медь, а в верхней части ячейки будет растворяться цинк в виде сульфата или хлорида.

Сейчас для батарей используют почти исключительно сухие элементы , которые более удобны в употреблении. Их родоначальником является элемент Лекланше. Электродами служат цинковый цилиндр и угольный стержень. Электролит представляет собой пасту, которая в основном состоит из хлорида аммония. Цинк растворяется в пасте, а на угле выделяется водород. Чтобы избежать поляризации, угольный стержень опускают в полотняный мешочек со смесью из угольного порошка и пиролюзита. Угольный порошок увеличивает поверхность электрода, а пиролюзит действует как деполяризатор, медленно окисляя водород. Правда, деполяризующая способность пиролюзита слабее, чем у упоминавшегося ранее бихромата калия. Поэтому при получении тока в сухих элементах напряжение быстро падает, они "утомляются" вследствие поляризации. Только через некоторое время происходит окисление водорода пиролюзитом. Таким образом, элементы "отдыхают", если некоторое время не пропускать ток. Проверим это на батарейке для карманного фонарика, к которой подсоединим лампочку. Параллельно лампе, то есть непосредственно на клеммы, подключим вольтметр. Сначала напряжение составит около 4,5 В. (Чаще всего в таких батарейках последовательно включены три ячейки, каждая с теоретическим напряжением 1,48 В.) Через некоторое время напряжение упадет, накал лампочки ослабеет. По показаниям вольтметра мы сможет судить, как долго батарейке нужно отдыхать.

Особое место занимают регенерирующие элементы, известные под названием аккумуляторы. В них протекают обратимые реакции, и их можно перезаряжать после разрядки элемента, подключив к внешнему источнику постоянного тока.

В настоящее время наиболее распространены свинцовые аккумуляторы; в них электролитом служит разбавленная серная кислота, куда погружены две свинцовые пластины. Положительный электрод покрыт пероксидом свинца PbO 2 (современное название - диоксид свинца), отрицательный представляет собой металлический свинец. Напряжение на клеммах составляет примерно 2,1 В. При разрядке на обеих пластинах образуется сульфат свинца, который опять превращается при зарядке в металлический свинец и в пероксид свинца.

error: