Чертеж объемных многогранников. Многогранники из картона

бумажных моделей

При построении бумажных моделей многогранников рекомендую действовать следующим образом:

1. Изготовьте чертежи граней. Если вы хотите построить модель среднего размера, можно просто напечатать чертежи, приведенные на странице, посвященной соответствующему многограннику. Если же вы хотите построить модель другого размера, вы должны выполнить чертеж самостоятельно. Будьте очень аккуратны, от точности чертежа зависит, насколько хорошо подойдут детали.

2. Изготовьте по чертежу трафарет. Для этого наложите чертеж на лист плотного картона и проколите оба листа в вершинах многоугольника иглой или тонким шилом. Острым карандашом соедините по линейке полученные проколы. Аккуратно вырежьте ножом или ножницами трафарет, отступив от карандашной линии примерно на 0.5 см.

3. Выберите материал, из которого вы будете изготавливать модель. Для моделей среднего размера неплохо подходит плотная чертежная бумага. Хорошо также использовать тонкий глянцевый картон. Если же вы делаете большую модель, нужно выбирать более плотный материал, чтобы модель не разрушилась от собственного веса. Если вы делаете цветную модель, надо использовать цветной материал или самостоятельно окрасить его до того, как вы сделаете заготовки.

4. По трафарету изготовьте требуемое число заготовок. Для изготовления заготовки положите трафарет на лист материала, выбранного вами для модели, и сделайте проколы в вершинах многоугольника. Теперь острым предметом — иглой или шилом — нанесите между проколами границы и линии сгибов. Если вы используете достаточно толстый картон, вместо иглы можно воспользоваться очень острым ножом, аккуратно надрезав картон на треть толщины.

5. Вырежьте детали, оставляя поля-наклейки, которыми части будут соединены, размером от 0.3 до 0.5 см. Есть несколько технологий соединения деталей (о них сказано ниже); оставляйте те наклейки, которые требуются при выбранной вами технологии. Срежьте уголки заготовок так, чтобы разрез прошел точно через прокол.

6. Аккуратно согните заготовки по проведенным вами линиям. Если сгиб очень длинный (более 8 см) то, чтобы не помять заготовку, воспользуйтесь линейкой, прижав ей заготовку по линии сгиба.

7. Этот этап можно пропустить, но если вы делаете одноцветную модель, с такой обработкой она значительно выиграет. Отогнув наклейки, аккуратно окрасьте черной тушью ребра будущей модели. Чтобы не испачкать заготовки, окрашивайте ребра по одному, не приступая к следующему, пока не просохло предыдущее. Очень удобно работать «конвейерным» способом, делая одновременно много одинаковых заготовок — вы окрашиваете у каждой заготовки по одному ребру, и, когда вы обработаете последнюю деталь, первая уже полностью высохнет и можно начинать окраску следующего ребра.

8. Если модель имеет очень острые многогранные углы, дополнительно подрежьте уголки наклеек. Это не стоит делать преждевременно, иначе будет тяжело акуратно отогнуть наклейки. Постарайтесь оставлять для склейки как можно больше места. Срезайте ровно столько, чтобы наклейки не мешали граням и друг другу вблизи вершин многогранника.

9. Когда все детали готовы, можно приступать к склейке модели. Существуют четыре способа склейки деталей:

Двойные наклейки. Наклейки сохраняются на каждом ребре каждой детали. Наклейки приклеиваются друг к другу, оставаясь внутри модели; в результате получаются ребра двойной толщины. Эти ребра делают модель очень жесткой и прочной.
Одинарные наклейки. Наклейка оставляется только на одной из деталей и приклеивается к другой. Этот метод плох тем, что склейка получается несимметричной а модель — неаккуратной. Я не рекомендую пользоваться этим методом. Однако при изготовлении некоторых моделей при соединении отдельных частей приходится пользоваться именно этим методом, так как двойную наклейку сделать не удается. Все такие случаи оговорены в тексте особо.
Склейка «встык». Метод требует очень большой аккуратности. При склейке «встык» наклейки вообще не оставляются. Детали соединяются без клея, а затем клей густо наносится на границу между ними. Части необходимо придерживать до высыхания клея. Этим методом стоит пользоваться только при изготовлении относительно простых моделей (там, где части легко придерживать до высыхания) из очень плотного материала. Кроме того, иногда «встык» приходится прикреплять очень мелкие детали — настолько мелкие, что наклейку сделать практически невозможно.
Склейка дополнительным материалом. Наклейки, так же, как и при склейке «встык», не делаются. Части скрепляются полоской тонкой бумаги (например, кальки), смазанной клеем, или скотчем. Таким способом трудно сделать аккуратную модель.
Выбор клея немаловажен. Прежде чем делать модель, проверьте клей на кусочках той же бумаги, с которой вы собираетесь работать. Необходимо, чтобы клей после высыхания не коробил бумагу и не оставлял на ней пятен. Кроме того, клей должен схватываться достаточно быстро (менее минуты, чтобы вам не пришлось придерживать детали в течении нескольких суток), но не мгновенно (чтобы вы могли немного сдвинуть уже соединенные детали для достижения аккуратного результата). Последнее, но очень важное требование — клей не должен быть токсичным. Если вы собираетесь изготовить модель, вы не сможете работать в вытяжном шкафу и вам поневоле придется дышать испарениями высыхающего клея.

Из доступных клеев лучше всего использовать ПВА. Этот клей удовлетворяет всем требованиям. Он бесцветен и не коробит бумагу, схватывается за 10-20 секунд и совершенно нетоксичен (при высыхании выделяет пары воды). Кроме того, ПВА можно разбавлять водой до нужной густоты. Дело в том, что иногда (например, при склеивании крупных деталей) удобнее иметь дело с жидким клеем, который схватывается чуть медленнее, а в других случаях (для мелких или труднодоступных деталей) хочется, чтобы клей схватился быстрее. Можно, конечно, пользоваться несколькими разными клеями, но использование смеси ПВА с водой в нужной пропорции значительно удобнее. Максимальное рекомендуемое разведение — 1:1, чаще же всего используется смесь одной части воды на две части клея.

Процедура склейки достаточно проста. Вы наносите равномерно тонкий слой клея на обе наклейки и соединяете их. Следует чуть-чуть подвигать детали, чтобы клей равномерно распредилился по наклейкам. После того, как части приведены в правильное положение, их следует плотно сжать и дождаться, пока клей не подсохнет. Время от времени надо пользоваться пинцетами или, еще лучше, хирургическими зажимами. Эти инструменты особенно полезны на завершающих стадиях, когда приходится работать внутри модели через небольшое отверстие. Кроме того, при постройке сложных моделей иногда приходится применять широкие плоские зажимы для придерживания наклеек до полного высыхания клея.

Примеры.

Тетраэдр

Тетраэдр принадлежит к семейству платоновых тел, то есть правильных выпуклых многогранников.Тетраэдр — простейший многогранник, его граняи являются четыре равносторонних треугольника.Несмотря на свою простоту, тетрэдр — полноправный представитель семейства платоновых тел.Все его грани — одинаковые правильные многоугольники, все его многогранные углы равны.

Тетраэдр — пространственный аналог плоского равностороннего треугольника, поскольку он имеет наименьшее число граней, отделяющих часть трехмерного пространства. Модель тетраэдра допускает четырехцветную раскраску, удовлетворяющую принципу раскраски карт. Изготовление модели начните с четырех заготовок. Не забудьте оставить наклейки с каждой стороны. Приклейте три заготовки к сторонам четвертой. Вы получите большой треугольник, состоящий из четырех заготовок. Соедините несклеенные боковые грани и склейте две из них между собой. Затем покройте клеем оставшиеся наклейки и приклейте последнюю грань, как бы закрывая коробку. Некоторое время придерживайте модель за ребра, чтобы внутренние напряжения и клей закончили свое дело.

название тетраэдр
обозначение 3|2 3
граней 4
ребер 6
вершин 4
невыпуклых граней 0
грань

количество 4

Додекаэдр

Додекаэдр — представитель семейства платоновых тел, то есть правильных выпуклых многогранников. Додекаэдр имеет двенадцать пятиугольных граней, сходящихся в вершинах по три. Этот многогранник замечателен своими тремя звездчатыми формами.

Додекаэдр допускает две интересных раскраски. Первая — раскраска в четыре цвета. Однако при такой раскраске противоположные грани, лежащие в параллельных плоскостях, получают различный цвет. Второй вариант — раскраска в шесть цветов, при которой противоположные грани окрашены одинаково.

Первый вариант раскраски — 4 цвета

Второй вариант раскраски — 6 цветов

Построение модели начинается с приклеивания пяти пятиугольников к одному центральному пятиугольнику. После этого боковые пятиугольники склеиваются междк собой — и половина модели готова. Остается подклеить к ней оставшиеся грани.

название додекаэдр
обозначение 3|2 5
граней 12
ребер 30
вершин 20
невыпуклых граней 0
грань

количество 12

Икосаэдр

Икосаэдр — представитель семейства платоновых тел, то есть правильных выпуклых многогранников. Икосаэдр имеет двадцать треугольных граней, сходящихся в вершинах по пять.

Икосаэдр имеет две эффектные пятицветные окраски. Во-первых, он может быть раскрашен так, чтобы у каждой вершины встречались все пять цветов (но противоположные грани при этом не будут окрашены одинаково). При другом варианте окраски противоположные грани окрашены одинаково, но у всех вершин, кроме двух диаметрально противоположных «полюсов», один из цветов встречается дважды.

Первый вариант раскраски

Второй вариант раскраски

Модель можно начать строить, склеив из пяти треугольников невысокую пятиугольную пирамиду без основания. К сторонам ее основания приклеиваются следующие пять треугольников. Между ними вы приклеиваете по одному треугольнику — в каждой вершине должно сходиться по пять граней. Наконец, завершая модель, приклейте последние пять треугольников.

название икосаэдр
обозначение 5|2 3
граней 20
ребер 30
вершин 12
невыпуклых граней 0
грань

количество 20

Ромбокубоктаэдр

Ромбокубоктаэдр принадлежит к семейству архимедовых тел, то есть полуправильных выпуклых многогранников. Название многогранника объясняет его происхождение — он получается ромбическим усечением кубоктаэдра. Наиболее естественна окраска этого тела, когда множество квадратных граней разбивается на два разноцветных подмножества — кубического и ромбического происхождения, а треугольники, оставшиеся в наследство от октаэдра, получают третий цвет.

Ромбокубоктаэдр особенно интересен связью с псевдоромбокубоктаэдром — многогранником, также принадлежащим к семейству архимедовых тел, но открытым только в XX веке.
При построении этой модели можно начать со склейки пяти квадратов в своеобразный крест. Затем между четырьмя квадратами креста вклеиваются треугольники, и вы получаете чашу с восьмиугольным верхним краем. К свободным наклейкам приклеиваются восемь квадратов. После этого модель несложно закончить, приклеивая детали по одной. Последним приклеивается любой из треугольников.

название ромбокубоктаэдр
обозначение 3 4|2
граней 26
ребер 48
вершин 24
невыпуклых граней 0
грань

количество 8 18

Ромбоусеченный икосододекаэдр

Ромбоусеченный икосододекаэдр принадлежит к семейству архимедовых тел, то есть полуправильных выпуклых многогранников. Он получается из икосододекаэдра при ином варианте ромбического усечения, нежели ромбоикосододекаэдр. Этот многогранник допускает простую окраску — все десятиугольники, оставшихся от додекаэдра, окрашиваются в один цвет, унаследованные от октаэдра шестиугольники — во второй, квадраты ромбического происхождения — в третий.
Для построения модели окружите десятиугольник попеременно квадратами и шестиугольниками. Присоединяйте последующие десятиугольники, окружая их кольцами граней двух других типов. В результате каждые два десятиугольника будут отделены таким кольцом.

название ромбоусеченный икосододекаэдр
обозначение 2 3 5|
граней 62
ребер 180
вершин 120
невыпуклых граней 0
грань

количество 30 20 12

Большой додекаэдр

Большой додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого додекаэдра — пересекающиеся пятиугольники. Вершины большого додекаэдра совпадают с вершинами описанного икосаэдра.

Большой додекаэдр был впервые описан Луи Пуансо в 1809 г.

Модель большого додекаэдра допускает шестицветную раскраску, при которой параллельные грани получают одинаковый цвет. Эта раскраска удовлетворяет принципу раскраски карт.
Для изготовления модели соедините заготовки между собой, чтобы получить 20 треугольных пирамид наклейками наружу. Затем склейте пирамиды способом, напоминающим способ склейки икосаэдра.
название большой додекаэдр
обозначение 5/2 2|5
граней 12
ребер 30
вершин 12
невыпуклых граней 0
грань

количество 12

Октагемиоктаэдр

Этот многогранник представляет собой ограненный кубоктаэдр. Иногда его называют также октатетраэдром. Четыре экваториальные шестиугольные грани многогранника имеют общие ребра с восемью треугольными гранями.

Другой ограненной формой кубоктаэдра является кубогемиоктаэдр.

Модель допускает окраску в пять цветов, при которой четыре экваториальные шестиугольные грани окрашиваются в четыре различных цвета, а все внешние треугольные грани получают пятый цвет. Эта раскраска удовлетворяет принципу раскраски карт.
Так же, как и при изготовлении модели тетрагемигексаэдра, есть два способа изготовления этой модели.

При использовании первого метода изготовьте восемь тетраэдров, оставив на части их ребер пазы, а на части — язычки. Самостоятельно определите, какие наклейки следует отогнуть, а какие оставить внутри. Соедините заготовки, вставляя язычки в соответствующие пазы.

При втором методе вы изготавливаете шесть чаш — бездонных пирамид с квадратными основаниями — и соединяете их наклейками двойной толщины. В последнюю очередь подклеиваются внешние треугольные грани.
название октагемиоктаэдр
обозначение 3/2 3|3
граней 12
ребер 24
вершин 12
невыпуклых граней 0
грань

количество 8 4

Малый битригональный икосододекаэдр

Этот многогранник состоит из 12 пентаграмм на гранях додекаэдра и 20 треугольников на гранях икосаэдра. Легко заметить, что у каждой вершины грани встречаются тройками в чередующемся порядке, поэтому многогранник и называется битригональным икосододекаэдром.

Пентаграммы могут быть окрашены в шесть цветов так, что противоположные звезды будут одноцветными. Для сохранения основного принципа раскраски карт при выборе красок для треугольных граней необходимо обратиться к второй схеме раскраски икосаэдра.

Чертеж и описание изготовления модели этого многогранника пока отсутствуют.

название малый битригональный икосододекаэдр
обозначение 3|5/2 3
граней 32
ребер 60
вершин 20
невыпуклых граней 12
грань 3 5/2
количество 20 12

3.1 «Рождение» великого физика Д.К.Максвелла

Однажды обыкновенный английский мальчик Джеймс, увлекшись изготовлением моделей многогранников, написал в письме к отцу: «… я сделал тетраэдр, додекаэдр и ещё два эдра, для которых не знаю правильного названия». Эти слова ознаменовали рождение в пока ничем не примечательном мальчике великого физика Джеймса Кларка Максвелла (Приложение 3). Думаю, что и вас, и ваших родных увлечёт изготовление моделей геометрических тел.

Кроме традиционных ёлочных украшений (хлопушек и фонариков) можно изготовить геометрические игрушки. Это модели правильных многогранников, сделанные из цветной бумаги. Ведь их форма – это образец совершенства! Совершенство форм, красивые математические закономерности, присущие правильным многогранникам, явились причиной того, что им приписывались различные магические свойства и все пять геометрических тел издавна были обязательными спутниками волшебников и звездочётов. И если потрудиться над их изучением и изготовлением, то наверняка они доставят радость и удовольствие, а возможно принесут и удачу.

3.2 Развёртки правильных многогранников

Одним из способов изготовления правильных многогранников является способ с использованием так называемых развёрток.

Если модель поверхности многогранника изготовлена из гибкого нерастяжимого материала (бумаги, тонкого картона и т. п.), то эту модель можно разрезать по нескольким рёбрам и развернуть так, что она превратится в модель некоторого многоугольника. Этот многоугольник называют развёрткой поверхности многогранника. Для получения модели многогранника удобно сначала изготовить развёртку его поверхности. При этом необходимыми инструментами являются клей и ножницы. Мо­дели многогранников можно сделать, поль­зуясь одной разверткой, на которой будут расположены все грани. Однако в этом случае все грани будут одного цвета.


3.3 Способ «плетения»

Кроме изготовления многогранников с помощью развёрток есть ещё один способ, при котором они сплетаются из нескольких полосок бумаги. Без применения клея модель приобретает жёсткую структуру после того, как будет заправлен последний кусочек бумаги.

Для того чтобы сплести тетраэдр, нужно:

Плетём куб:

Если полоски разного цвета, то у получившегося куба противоположные грани одинакового цвета. Этот способ интересен тем, что любые две полоски не зацеплены одна с другой, а все три зацеплены.

Возможно, при виде моделей многогранников кто-нибудь спросит: «Какая от них польза?» На это можно ответить так: «А разве всё красивое полезно?»

3.4 Ещё один способ изготовления многогранников

Для изготовления моделей многогранников можно воспользоваться рекомендациями, данными в книге М. Винниджера «Модели многогранников». «Автор этой книги, заражая своим энтузиазмом читателя, даёт ему ясные и четкие указания о том, как изготовить модели различных многогранников. Объяснения проиллюстрированы фотографиями моделей из собрания автора – возможно, наиболее полного в настоящее время. Но фотографии не в состоянии передать всего великолепия самих моделей. Наиболее сложные «курносые» модели не только крайне трудны в изготовлении, но и весьма декоративны. Это ли не превосходный пример родства истины и красоты!» – отмечает в предисловии к книге Г.С.М. Кокстер.

М. Винниджер отмечает: «Время, которое я затратил на изготовление моделей невыпуклых однородных многогранников, в существенной степени зависело от характера модели. Так, на простейшие из них требовалось не более трех-четырех часов, а в среднем же приходилось затрачивать восемьдесят часов, а некоторые сложные модели занимали двадцать-тридцать часов. Две модели отняли у меня свыше сотни часов каждая. Теперь, когда работа завершена, я, пожалуй, соглашусь с тем, что ее объем поразил и меня. Но китайская пословица гласит: «Если ты собираешься пройти тысячу ли, начни с того, что сделай первый шаг». За первым шагом последует другой, и вскоре красота открывшихся взору путника видов заставит его забыть о трудностях пути».

Прежде чем приступить к изготовлению многогранников ниже приведённым способом, необходимо познакомиться с общими рекомендациями. (Приложение 4).

3.4.1 Тетраэдр

Все четыре гра­ни тетраэдра – равносторонние треугольники. Четыре – это наименьшее число гра­ней, отделяющих часть трёхмерного пространства. Тем не менее, тетраэдр обладает многими свойствами, харак­терными для однородных многогран­ников. Все его грани суть правильные многоугольники, причём каждая отде­ляется ребром в точности от одной грани. Все многогранные углы тетра­эдра также равны между собой. Если нужно сде­лать модель тетраэдра разноцветной, следу­ет приготовить развертки для каждого типа грани в виде отдельного много­угольника. Для этого понадо­бится всего один трафарет в виде рав­ностороннего треугольника.

Необходимо сделать четыре заготовки разного цвета – например, Ж, С, О и К. При этом нужно оставить наклейки с каждой стороны, как показано на рисунке. Теперь склеиваем все четыре заготовки вместе, затем соединяем несклеенные боковые грани и склеиваем вначале только две из них между собой. Затем накладываем клей на оставшиеся наклейки и приклеиваем последнюю грань, как бы закрывая коробку.

Октаэдр

Так как его противоположные грани октаэдра лежат в параллельных плоскостях, то можно превосходно обойтись всего четырьмя красками. Модель этого многогран­ника мы начинаем делать, склеивая четыре треугольника. После того как склеим между собой грани 1 и 4, то в наших руках окажется правильная четырехугольная пирамида без квад­ратного основания. Эта часть состав­ляет ровно половину модели.

Вторая половина энантиоморфна первой. Тем не менее, проще продол­жить работу в такой последовательно­сти: сначала приклеить наклейки че­тырех оставшихся треугольников к соответствующим наклейкам на сторо­нах квадратного основания. Нужно просле­дить, чтобы противоположные грани октаэдра имели один и тот же цвет. Затем последовательно склеить наклейки соседних граней, сно­ва закрывая модель последним тре­угольником, как крышкой. Теперь можно заметить, что квадрат, только что послуживший основанием первой половины модели, на самом деле всего лишь один из трёх квадратов такого рода, которые можно видеть на полной модели. При этом ребра квадратов лежат в трёх взаимно перпендикуляр­ных плоскостях.

3.4.3 Гексаэдр (куб)

Несомненно, куб, или, как его иногда называют математики,гексаэдр – са­мый общеизвестный и широко исполь­зуемый многогранник. Все шесть его граней – квадраты, сходящиеся по два вдоль каждого ребра и по три в каж­дой вершине. Можно начать по­стройку модели куба, выбрав один квадрат и присоединив к нему четыре других, как показано на рисунке. Затем нужно склеить наклейки соседних боковых граней, причём склеенные по­парно наклейки вновь образуют как бы жесткий скелет многогранника. Оста­ется добавить последнюю грань, и это действие уже с полным правом можно будет уподобить закрыванию ящика крышкой.

Возможно, что в своей простоте куб не самый привлекательный многогран­ник. Но он обладает несколькими уди­вительными свойствами в отношении других Платоновых и некоторых архи­медовых тел. А объединение пяти ку­бов можно поместить в додекаэдр, и при этом получается очень красивая модель.

Икосаэдр

Икосаэдр – одно из пяти платоновых тел, по простоте следующее за тетраэдром и октаэдром. Их объединя­ет то обстоятельство, что гранями каждого являются равносторонние тре­угольники. При изготовлении модели икосаэдра можно выбрать любую из двух эффектных возможностей распре­деления пяти цветов. Во-первых, ико­саэдр может быть раскрашен так, что у каждой вершины встретятся все пять цветов (правда, в таком случае проти­воположные грани не будут окрашены одинаково). Другой способ обеспечи­вает противоположным граням одина­ковые цвета, зато у каждой вершины, за исключением двух полярных, будет повторяться по кругу один цвет. Обе раскраски очень интересны. Обе модели можно строить, исходя из одного и того же начального расположения пяти равносторонних треугольников. Они образуют невысо­кую пятиугольную пирамиду без осно­вания. К сторонам её основания нужно при­клеить следующие пять треугольников, руководствуясь той или иной таблицей раскраски. Между ними приклеивается по одному треугольнику – это сделать несложно, если обратить внимание на то, что в каждой вершине сходятся пять граней. Завершая модель, при­клеивают последние пять треугольников. Чтобы облегчить пользование таб­лицами раскраски, нужно запомнить: первая строка любой таблицы задает раскрас­ку пяти треугольников, окружающих «северную полярную» вершину ико­саэдра. Последующие две строки ука­зывают раскраску «экваториального» кольца из десяти чередующихся равно­сторонних треугольников. Наконец, четвертая строка показывает раскрас­ку граней у, «южного полюса» икоса­эдра.

Интересен порядок рас­краски не только вблизи «полюсов», но и у других десяти вершин, то по этим таблицам его тоже легко найти. Надо совершить круговой обход по таблице по следующему правилу: на­чиная с двух соседних цветов в крайней строке, опуститься (или подняться) на следующую строку, затем еще на одну и после этого вернуться на исходные. Например:

Это наводит на мысль о том, что таблицы раскраски можно задавать совершенно по-иному – нумеруя вер­шины и выписывая порядок чередова­ния цветов у каждой из них. Правда, это приведёт к тому, что каждая тре­угольная грань икосаэдра будет по­именована в такой таблице трижды, но все же таблицы удобны: с их по­мощью легче последовательно «об­клеивать» вершину. Для икоса­эдра таблицы этого типа выглядят так:

Здесь указаны раскраски только шести вершин, причем вершина (0) – снова «северный полюс» икосаэдра. Для обе­их моделей вершины, противополож­ные этим, имеют энантиоморфную рас­краску. Её можно получить, читая со­ответствующую строку в обратном порядке, то есть справа налево.

Додекаэдр

В известном смысле додекаэдр пред­ставляет наибольшую привлекатель­ность среди Платоновых тел, соперни­чая с икосаэдром, который почти ему не уступает (а быть может, в чём-то и превосходит). Пожалуй, пальму пер­венства додекаэдр получает за свои три звездчатые формы, описываемые ниже.

Модель этого многогранника можно сделать четырёхцветной двумя спосо­бами; если же воспользоваться для раскраски шестью цветами, то про­тивоположные грани легко сделать од­ноцветными. Такую раскраску хорошо перенести на упомянутые выше звезд­чатые формы додекаэдра. Приводим описание.

Построение модели начинается с приклеивания пяти разноцветных пяти­угольников – скажем, Ж, С, О, К, 3 – к одному центральному пятиугольни­ку, например белого цвета (Б). После этого следует склеить цветные пятиугольники между собой – и по­ловина дела сделана. Остаётся подклеить остальные грани додекаэд­ра к уже сделанной половине таким образом, чтобы противоположные гра­ни были одноцветными.

На рисунке показана четырехцветная раскраска додекаэдра. Можно восполь­зоваться и энантиоморфным порядком цветов. Иногда удобнее обращаться именно к такой раскраске – особенно для моделей, имеющих симметрию до­декаэдра.

Заключение

Миром красоты и гармонии мы называем правильные многогранники. Ведь на протяжении всей истории человечества эти многогранники восхищали симметрией и совершенством форм. Изображения пяти правильных многогранников – «Тела Платона», 13 полуправильных выпуклых многогранников – «Тела Архимеда» и 4-х невыпуклых многогранников – «Тела Пуансо – Кеплера» приводят пытливые умы к размышлению о красоте истин.

Подводя итоги своей работы, я могу сделать вывод: существует 5 правильных выпуклых многогранников: тетраэдр (четырёхгранник), гексаэдр (шестигранник), октаэдр (восьмигранник), додекаэдр (двенадцатигранник), икосаэдр (двадцатигранник) – Платоновы тела, 4 звездчатых правильных многогранника – тела Кеплера – Пуансо, 13 полуправильных многогранников – тела Архимеда. В работе описаны их свойства, даны развёртки для их изготовления, показано, где они встречаются в природе.

Выполняя работу, я научилась изучать литературу по названной теме, делать анализ прочитанного, выбирать нужный материал, искать ответы на возникающие вопросы, делать выводы.

При работе над рефератом «В мире правильных многогранников» я прикоснулась к удивительному миру красоты, совершенства, гармонии, узнала имена учёных, художников, которые посвятили этому миру свои труды, являющиеся шедеврами науки и искусства. Ещё раз убедилась, что истоки математики – в природе, окружающей нас.

В ходе данного исследования был проведён анализ определений правильных многогранников, установлены условия существования правильных многогранников, выявлены свойства правильных многогранников, сделано описание технологии их построения.

Литература

1. Александров А.Д. , Вернер А.Л. , Рыжин В.И. Начало стереометрии. – М.: Просвещение, 1981.

2. Атанасян Л. С., Бутузов В. Ф. и др. Геометрия. Учебник для 10 – 11 классов средней школы. – М.: Просвещение, 2001.

3. Бевз Г. П., Бевз В. Г., Владимирова Н. Г. Геометрия. Учебник для 7 – 11 классов средней школы. – М.: Просвещение, 1992.

4. Веннинджер М. Модели многогранников. – М.: Мир, 1974.

5. Выгодский М. Я. Справочник по элементарной математике. – М.: Наука,1972.

6. Глейзер Г. И. История математики в школе. IX-X классы. Пособие для учителей. – М.: Просвещение, 1983.

7. Клопский В. М., Скопец З. А., Ягодовский М. И. Геометрия 9 – 10 класс. – М.: Просвещение, 1983.

8. Погорелов А. В. Геометрия. Учебник для 7- 11 классов средней школы. – М.: Просвещение, 1990.

9. Савин А. П., Станцо В. В., Котова А. Ю. Я познаю мир: Детская энциклопедия: Математика. – М.: АСТ, 1999.

10. Смирнова И. М., Смирнов В. А. Геометрия. Учебник для 10 – 11 классов общеобразовательных учреждений. – М.: Мнемозина, 2003.

11. Шарыгин И. Ф., Ерганжиева Л. Н. Наглядная геометрия. 5 – 6 кл.: Пособие для общеобразовательных учебных заведений. – М.: Дрофа, 1999.

12. Математика. Еженедельная учебно-методическая газета. №24, 2004.с. 15-32.

Приложение 1

ПЛАТОН (428 или 427 до н. э. - 348 или 347), древнегреческий философ. Ученик Сократа, ок. 387 основал в Афинах школу. Идеи (высшая среди них - идея блага) - вечные и неизменные умопостигаемые прообразы вещей, всего преходящего и изменчивого бытия; вещи - подобие и отражение идей. Познание есть анамнесис - воспоминание души об идеях, которые она созерцала до ее соединения с телом. Любовь к идее (Эрос) - побудительная причина духовного восхождения. Идеальное государство - иерархия трех сословий: правители-мудрецы, воины и чиновники, крестьяне и ремесленники. Платон интенсивно разрабатывал диалектику и наметил развитую неоплатонизмом схему основных ступеней бытия. В истории философии восприятие Платона менялось: «божественный учитель» (античность); предтеча христианского мировоззрения (средние века); философ идеальной любви и политический утопист (эпоха Возрождения). Сочинения Платона - высокохудожественные диалоги; важнейшие из них: «Апология Сократа», «Федон», «Пир», «Федр» (учение об идеях), «Государство», «Теэтет» (теория познания), «Парменид» и «Софист» (диалектика категорий), «Тимей» (натурфилософия).

ПЛАТОН (427-347 или 348 до н. э.), древнегреческий мыслитель, наряду с Пифагором, Парменидом и Сократом - родоначальник европейской философии; глава философской школы Академия.

Жизнь

Происходил из аристократической семьи, принимавшей активное участие в политической жизни Афин (род его отца Аристона, по преданию, восходил к мифическому царю Кодру; среди предков матери, Периктионы, - законодатель Солон; после победы спартанцев в Пелопоннесской войне дядя Платона, Хармид, - один из Десяти ставленников Лисандра в Пирее в 404-403, Критий - один из Тридцати тиранов в Афинах).

Получил традиционное для аристократического юноши хорошее воспитание (физическое и мусическое). В юности слушал софиста гераклитовской ориентации Кратила, в 20 лет познакомился с Сократом, начал регулярно посещать его беседы и отказался от реальной политической карьеры. Отличался крайней застенчивостью и замкнутостью.

Платон. Из «Апологии Сократа»

После смерти Сократа (399) Платон уезжает в Мегары. Принимает участие в Коринфской войне, в походах в Танагру (395) и Коринф (394). В 387 посещает Южную Италию, Локры Эпизефирские - родину древнейших записанных законов Залевка (из Локр происходит пифагореец Тимей, именем которого назван знаменитый диалог Платона, путешествие вообще задумывалось прежде всего ради знакомства с пифагорейцами). В Сицилии (Сиракуза), он знакомится с Дионом, приближенным правителя Сиракуз Дионисия I Старшего. По возвращении из Сицилии (387) основал в Афинах свою философскую школу - в гимнасии Академия. Знакомство с Дионом, попавшим под обаяние личности Платона и его образа мыслей, способствовало тому, что в 367-366 и 361 Платон совершил еще две поездки в Сицилию.

Школа Платона

Использование общественных гимнасиев для занятий науками и ораторским искусством было обычным для Афин 5-4 вв.; «школа Платона», вероятно, формировалась постепенно, по названию гимнасия она также стала именоваться Академией. Среди принадлежавших к платоновскому кружку - его племянник Спевсипп, ставший во главе Академии после смерти Платона, Ксенократ, третий схоларх Академии, знаменитый математик и астроном Евдокс Книдский, остававшийся во главе школы во время второй поездки Платона в Сицилию. В 366 в Академии появляется Аристотель и остается там вплоть до смерти Платона.

Сочинения

До нас дошло издание сочинений Платона, предпринятое пифагорейцем Трасиллом Александрийским, придворным астрологом императора Тиберия (ум. 37), разбитое на тетралогии:

«Евтифрон», «Апология», «Критон», «Федон».

«Кратил», «Теэтет», «Софист», «Политик».

«Парменид», «Филеб», «Пир», «Федр».

«Алкивиад I», «Алкивиад II», «Гиппарх», «Соперники».

«Феаг», «Хармид», «Лахет», «Лисид».

«Евтидем», «Протагор», «Горгий», «Менон».

«Гиппий Больший», «Гиппий Меньший», «Ион», «Менексен».

«Клитофонт», «Государство», «Тимей», «Критий».

«Минос», «Законы», «Послезаконие», «Письма».

Помимо этого под именем Платона дошел ряд других диалогов.

Начиная с конца 17 в., корпус текстов Платона, подвергался тщательному критическому рассмотрению с точки зрения их подлинности и хронологии.


Похожая информация.


Поделки с детьми. ФУТБОЛЬНЫЙ МЯЧ И МНОГОГРАННИКИ ИЗ ЦВЕТНОЙ БУМАГИ.

Среди моих читателей очень много воспитателей Детских садиков и руководителей Художественных кружков, в связи с этим, я изредка публикую посты с поделками вместе с детьми и для детей.

Кстати, всем родителям хочу порекомендовать очень хорошую детскую студию "Теремок", которая существует уже два года и зарекомендовала себя одной из самых лучших студий в воспитательно-образовательной работе с детьми. "Теремок" поможет вашему малышу находить общий язык в общении со сверстниками, разовьет уважение к старшим, развлечет, устраивая праздники и конкурсы и многое-многое другое. Очень нужно, детям, с самого раннего возраста, прививать любовь к творчеству. Это вырабатывает у них любознательность, расширяет кругозор, прививает любовь к труду. В студии есть очень хороший художественный кружок по разным видам и жанрам изобразительного искусства. Подробнее о студии вы сможете узнать на сайте - http://teremok64.ru.

А сейчас, предлагаю вам занять детей и сделать вместе с ними многогранники из цветной бумаги. Это не только увлечет их, они получат первые знания в математике. Ниже, под катом, пять шаблонов на некоторые многоугольники, которые нужно распечатать и увеличить. Все очень легко и просто, вырезать, согнуть и склеить. Очень красивая гирлянда, яркая, веселая и солнечная)

Можете сделать макет футбольного мяча. Для этого, желательно, взять бумагу - поплотнее.

Во вложении, шаблон мяча в натуральную величину, состоит из восьми страниц.

Вложение:

ДОДЕКАЭДР

ИКОСАЭДР

ОКТАЭДР

ТЕТРАЭДР

Вырезать шаблоны и согнуть по пунктирным линиям

ВУАЛЯ. Можете их собрать на ниточку и сделать математическую гирлянду)

Что делать, если у вас нет необходимых для игры многогранников? Что за вопрос - конечно же, купить их. Если в вашем городе нет соответсвующих магазинов, то в наше время можно заказать игровые многогранники во многих Интернет-магазинах, в которых есть доставка почтой в другие города. Да, но... бывают ситуации, когда играть нужно уже сегодня, а дайсов под рукой нет. Что же делать? Самый простой способ изготовить необходимые многогранники из картона или плотной бумаги: как свидетельствует наш коллега Andreu , полученный результат вполне приемлим и достижим за очень небольшое время.


Многогранник из бумаги за 20 минут

Для создания кубика, Вам понадобятся: линейка, ластик, клей (лучше клей-карандаш), булавка, ножницы, карандаш, нож, плотная бумага (чертёжная или для рисования).

Двадцатигранник (икосаэдр).

Построим двадцать треугольников с равными сторонами по рисунку (я строил треугольники со стороной 15 мм), можно воспользоваться готовым трафаретом. Дочертим «крылышки» для приклеивания граней друг к другу.

По вычерченным сторонам треугольников выдавите желобки для сгибов (тупой стороной ножа по линейке).

Нанесите числа и вырежьте.

Сворачиваем по сгибам и склеиваем.

Осталось доклеить верхние треугольники.

Закрываем последние два треугольника.

Прижимаем «крылышки» внутри булавкой

Двенадцатигранник (Додекаэдр).

Построим двенадцать пятиугольников с равными сторонами по рисунку (я строил пятигранники со стороной 10 мм).

Склеиваем, готово!

Восьмигранник (Октаэдр).

Построим восемь треугольников с равными сторонами по рисунку (я строил треугольники со стороной 15 мм).

    Для изготовления объемных геометрических фигур главное иметь шаблоны, которые можно вырезать, а затем склеить.

    Можно сделать из белой или из цветной бумаги. Можно вырезать из бумаги с каким-либо рисунками или же цифрами.

    Предлагаю сделать не совсем обычную объемную фигуру в технике оригами. Смотрим видео:

    Чтобы дети лучше запомнили, какие бывают геометрические фигуры, и знали, как они называются, можно из плотной бумаги или картона сделать объемные геометрические фигуры . Кстати, на основе их можно изготовить красивую подарочную упаковку.

    Понадобятся:

    • плотная бумага, либо картон (лучше цветные);
    • линейка;
    • карандаш;
    • ножницы;
    • клей (лучше ПВА).

    Самое сложное - это разработать и начертить развртки, нужны хотя бы базовые знания черчения. Можно взять и готовые развртки и распечатать на принтере.

    Чтобы линия сгиба была ровной и острой, можно воспользоваться тупой иглой и металлической линейкой. При проведении линии иголку нужно сильно нагнуть в направлении движения, практически положив е набок.

    Это развертка трехгранной пирамиды

    Это развертка куба

    Это развертка октаэдра (четырехгранной пирамиды)

    Это развертка додекаэдра

    Это развертка икосаэдра

    Вот здесь можно найти шаблоны более сложных фигур (Платоновы Тела, Архимедовы тела, многогранники, полиэдры, разные виды пирамид и призм, простые и косые бумажные модели).

    Объемные геометрические фигуры являются лучшим способом изучение малышом окружающего мира. Отличный учебный материал/отличное учебное пособие для в изучении геометрических фигур - это, как раз, объемные фигуры. Таким способом лучше запоминаются геометрические фигуры.

    Лучши материал для изготовления подобных объемных фигур - это плотная бумага (можно цветную) или же картон.

    Для изготовления понадобятся кроме бумаги еще и карандаш с линейкой, а также ножницы и клей (вырезать и клеить развертки).

    Нужно начертить подобным образом развертки и вырезать их:

    После чего их нужно склеивать край к краю.

    Должны получится следующего вида объемные геометрические фигуры:

    Вот несколько схем, по которым можно изготовить объмные геометрические фигуры.

    Самая простая - тетраэдр .

    Чуть сложнее будет изготовить октаэдр .

    А вот эта объмная фигура - додекаэдр .

    Ещ одна - икосаэдр .

    Более подробно об изготовлении объмных фигур можно посмотреть здесь.

    Вот так выглядят объмные фигуры не в собранном виде:

    А вот так выглядят уже готовые:

    Из объмных геометрических фигур можно сделать много оригинальных поделок, в том числе и упаковки для подарка.

    Прежде чем начать делать объемные геометрические фигуры, нужно представить (или знать как выглядит) фигуру в 3D измерении: сколько граней имеет та или иная фигура.

    Сначала необходимо правильно начертить на бумаге фигуру по граням, которые должны быть соединены между собой. У каждой фигуры грани имеют определенную форму: квадрат, треугольник, прямоугольник, ромб, шестиугольник, круг и т.д.

    Очень важно, чтобы длина ребер фигуры, которые будут соединены друг с другом имели одинаковую длину, чтобы во время соединения не возникло проблем. Если фигура состоит из одинаковых граней, я бы предложила сделать шаблон во время черчения использовать этот шаблон. Так же можно скачать из интернета готовые шаблоны, распечатать их, согнуть по линиям и соединить (склеить).

    Шаблон конуса:

    Шаблон пирамиды:

    Изготовление объемных геометрических фигур вам понадобится как на школьных занятиях, так и для изучения фигур с малышами. Этот процесс можно превратить в игру, делая из картона плотные объемные геометрические фигуры.

    Для изготовления фигур нам понадобится - карандаш, линейка, цветной картон, клей.

    Можно распечатать схемы из интернета, потом нанести их на плотную бумагу, не забывая про линии сгиба, которые будут склеиваться между собой.

    А воспользоваться можно следующими схемами:

    А вот они уже в готовом виде.

    Так вы весело и с пользой сможете провести с малышом время, изучая геометрические фигуры.

    Самостоятельно смастерив из бумаги объмные фигуры можно не только использовать их для развлечения, но и для обучения.

    К примеру, можно наглядно показать ребнку как выглядит та или иная фигура, дать е подержать в руках.

    Либо можно с целью обучения распечатать схемы со специальными обозначениями.

    Так предлагаю ниже ознакомиться со семой додекаэдра , как простой, так и с небольшими рисунками, которые только привлекут внимание малыша и обучение сделают более веслым и занимательным.

    Также схему куба можно использовать для обучения цифрам.

    Схема пирамиды может помочь усвоить формулы, которые относятся к данной фигуре.

    Кроме того, предлагаю ознакомиться со схемой октаэдра .

    Схема тетраэдра помимо прочего поможет изучить цвета.

    Как вы поняли, вышеприведнные шаблоны необходимо распечатать, вырезать, согнуть по линиям, склеить по специальным узким полосочкам, прилегающим к избранным сторонам.

    Объемные геометрические фигуры просто необходимы при обучении: они предоставляют ученикам возможность держать их в руках, рассматривать, что является важной частью учебного процесса, они просто необходимы в качестве пособия при изучении знаменитой теоремы Эйлера - наглядно демонстрируя, что даже при деформациях, искривлениях число граней многогранника, а значит и соотношение Эйлера, останется неизменным:

    Кроме того, объемные фигуры могут служить отличным пособием, помогающим объяснить ученикам, как найти площадь поверхности многогранника.

    Итак, с помощью приведенных ниже шаблонов Вы можете легко сделать следующие фигуры:

    Треугольная Призма

    N-угольная призма

    Тетраэдр

    Икосаэдр

    И еще несколько редких объемных геометрических фигур можно найти по этой ссылке.

error: