Эффективность систем кондиционирования воздуха с утилизаторами тепла. Технико-экономическая оптимизация утилизации теплоты вытяжного воздуха в системах вентиляции и кондиционирования

В Северной Европе и Скандинавии получили распространение системы вентиляции многоэтажных жилых зданий с подогревом приточного воздуха за счет теплоты удаляемого с помощью теплоутилизаторов. Теплоутилизаторы в системах вентиляции получили развитие в 1970-е годы в период энергетического кризиса.

К настоящему времени массовое применение нашли теплоутилизаторы: – рекуперативного типа на базе пластинчатых воздухо-воздушных теплообменников (рис. 41); – регенеративные с вращающейся теплообменной насадкой (рис. 42); – с промежуточным теплоносителем с теплообменниками «жидкость-воздух» (рис. 43).

По своему исполнению в многоэтажных жилых зданиях теплоутилизаторы могут быть центральными на все здания или группу квартир и индивидуальными, поквартирными.

Рис. 42. Теплоутилизатор с вращающейся теплообменной насадкой

Рис. 41. Теплоутилизатор рекуперативного типаутилизатор теплоты вентиляционного воздуха)

При сходных массогабаритных показателях наибольшей энергетической эффективностью обладают регенеративные теплоутилизаторы (80-95%), далее следуют рекуперативные (до 65%) и на последнем месте находятся теплоутилизаторы с промежуточным теплоносителем (45-55%).

По своим конструктивным особенностям теплоутилизаторы с промежуточным теплоносителем мало пригодны для индивидуальной поквартирной вентиляции, и поэтому на практике их используют для центральных систем.

Рис. 43. Утилизатор теплоты вентиляционного воздуха с промежуточным теплоносителем: 1 – приточная вентустановка; 2 – вытяжная вентустановка; 3 – теплообменник; 4 – циркуляционный насос; 5 – фильтр; 6 – корпус утилизатора

Регенеративные теплоутилизаторы обладают существенным недостатком - вероятностью смешивания определенной части удаляемого воздуха с приточным в корпусе аппарата, что, в свою очередь, может привести к переносу неприятных запахов и болезнетворных бактерий. Объем перетекающего воздуха в современных аппаратах сокращен до долей процента, но, тем не менее, большинство специалистов рекомендуют ограничить их область применения пределами одной квартиры, коттеджа или одного помещения в общественных зданиях.

Рекуперативные теплоутилизаторы, как правило, включают в свой состав два вентилятора (приточный и вытяжной), пластинчатый теплообменник, фильтры (рис. 41). В современных конструкциях в теплоутилизатор встраиваются два водяных или электрических подогревателя. Один служит для защиты от замораживания вытяжного тракта теплообменника, второй - для догрева температуры приточного воздуха до заданного значения.

Эти системы, по сравнению с традиционными, обладают рядом достоинств, к числу которых следует отнести существенную экономию тепловой энергии, расходуемой на подогрев вентиляционного воздуха, - от 50 до 90% в зависимости от типа применяемого утилизатора; а также высокий уровень воздушно-тепловой комфортности, обусловленный аэродинамической устойчивостью вентиляционной системы и сбалансированностью расходов приточного и удаляемого воздуха.

При установке рекуперативных теплоутилизаторов поквартирно появляются: – возможность гибко регулировать воздушно-тепловой режим в зависимости от режима эксплуатации квартиры, в том числе с использованием рециркуляционного воздуха; – возможность защиты от городского, внешнего шума (при использовании герметичных светопрозрачных ограждений); – возможность очистки приточного воздуха с помощью высокоэффективных фильтров.

Реализация указанных достоинств связана с решением ряда проблем: – необходимо предусмотреть соответствующие объемно-планировочные решения квартиры и выделить место для размещения теплоутилизаторов и дог полнительных воздуховодов; – следует предусмотреть защиту от замораживания теплоутилизаторов при низких температурах наружного воздуха (-10 °С и ниже); – утилизаторы должны быть в малошумном исполнении и при необходимости оборудованы дополнительными шумоглушителями; – необходимо обеспечить квалифицированное техническое обслуживание теплоутилизаторов (замена или чистка фильтров, промывка теплообменника).

Различные модификации утилизаторов теплоты удаляемого воздуха производят в общей сложности более 20 фирм. Кроме того, производство энергосберегающего оборудования начинается и на отечественных предприятиях.

Уровень звуковой мощности приведен без сети воздуховодов, без глушителей для открыто расположенного утилизатора.

Широкое применение в жилых многоэтажных зданиях систем механической вентиляции с утилизацией теплоты вытяжного воздуха сдерживается рядом факторов: – практически отсутствует материальное стимулирование энергосбережения у потребителей - владельцев квартир; – инвесторы-застройщики не заинтересованы в дополнительных затратах на инженерное оборудование в домах эконом- и бизнес-класса, полагая, что качество вентиляции - второстепенный показатель в формировании рыночной стоимости жилья; – «отпугивает» необходимость технического обслуживания механической вентиляции; – население недостаточно информировано о критериях воздушно-теплового комфорта жилища, его влиянии на здоровье и работоспособность.

Вместе с тем наметилась положительная тенденция преодоления отмеченных проблем, и у инвесторов, и у покупателей квартир появляется практический интерес в современных технических решениях систем вентиляции.

Сравним эффективность традиционной вентиляции и новых технических решений применительно к жилым многоэтажным зданиям массовой застройки.

Предлагается три варианта организации вентиляции в жилых 17-этажных зданиях серии П-44 для условий Москвы:
A. Вентиляция по типовому проекту (естественная канальная вытяжка из помещений кухни, ванны и туалета и приток за счет инфильтрации и от
крывания фрамуг окон).
Б. Механическая вытяжная, центральная система вентиляции с установкой в квартирах приточных и вытяжных клапанов постоянного расхода воздуха.
B. Механическая приточно-вытяжная система вентиляции с утилизацией теплоты удаляемого воздуха в рекуперативных теплообменниках.

Сравнение проводилось по трем критериям: – качество воздуха; – расход тепловой энергии в системах вентиляции; – акустический режим.

Для условий Москвы по данным метеонаблюдений были приняты следующие климатические условия.

В расчетах приняты следующие значения сопротивления теплопередаче: – стен - 3,2 м2 °С/Вт; – окон – 0,62 м2 °С/Вт; – покрытий - 4,04 м2 °С/Вт.

Система отопления с традиционными конвекторами на параметры теплоносителя 95/70 °С.

В каждом подъезде на этаже расположено две 2-комнатных, одна 1-комнатная и одна 3-комнатная квартиры. В каждой квартире предусмотрена кухня с электроплитой, ванная комната и туалет.

Вытяжка производится в соответствии с нормативами: – из кухни - 60 м3/ч; – из ванной комнаты - 25 м3/ч; – из туалета - 25 м3/ч.

Для анализа принято, что в варианте А за счет проветривания путем открывания фрамуг окон среднесуточный объем притока соответствует объему вытяжки из квартиры.

Рис. 44. Рекуператор с установкой догревателей воздуха в квартирах экспериментального дома: 1 – вентилятор удаляемого воздуха; 2 – вентилятор приточного воздуха; 3 – пластинчатый теплообменник; 4 – электрический нагреватель; 5 – подогреватель теплообменника; 6 – фильтр для наружного воздуха (класс EU5); 7 – фильтр для удаляемого воздуха (класс EU5); 8 – датчик против замерзания теплообменника; 9, 10 – автоматический сброс термозащиты; 11, 12 – ручной сброс термозащиты; 13 – датчик температуры приточного воздуха

В варианте Б постоянный воздухообмен обеспечивается за счет работы центрального вытяжного вентилятора, сетью воздуховодов связанного с каждой из квартир. Постоянство воздухообмена обеспечивается применением приточных клапанов постоянного расхода, установленных в створках окон, и саморегулирующихся вытяжных клапанов на кухне, в ванной комнате и туалете.

В варианте В используется механическая приточно-вытяжная система вентиляции с утилизацией теплоты удаляемого воздуха для подогрева приточного в пластинчатом теплообменнике. При сравнении также принято условие постоянства воздухообмена.

По критерию качества воздуха вариант А существенно уступает вариантам Б и В. Проветривание осуществляется периодически в течение произвольно выбранного жителями времени, т. е. субъективно и потому далеко не всегда эффективно. В зимний период проветривание связано с необходимостью покидать жителями проветриваемое помещение. Попытки отрегулировать открытие фрамуг для постоянной вентиляции чаще всего приводят к нестабильности работы вентиляции, возникновению сквозняков, температурному дискомфорту. При периодическом проветривании качество воздуха после закрытия форточек ухудшается, и большую часть времени жители проводят в загрязненной воздушной среде (рис. 45).

Рис. 45. Изменение воздухообмена и концентрации вредных веществ при периодическом проветривании помещений:
1 - воздухообмен;
2 - концентрация вредных веществ;
3 - нормативный уровень концентрации вредных веществ

Особый режим вентиляции предусматривается для помещения кухни. При приготовлении пищи в работу включается надплитньгй зонт, оборудованный высокопроизводительным многоскоростным вентилятором. Воздухопроиз-водительность современных надплит-ных зонтов достигает 600-1000 м3/ч, что во много раз превышает показатель расчетного воздухообмена в квартире. Для удаления воздуха от надплитных зонтов, как правило, предусматриваются отдельные воздуховоды, не связанные с системой общеобменной вытяжной вентиляции из кухни. Компенсационный расход приточного воздуха обеспечивается приточным клапаном в стене, открываемым в период работы зонта. Общий вывод по сравниваемым вариантам можно сделать следующий: наибольшей эффективностью по воздушно-тепловому комфорту и экономии тепловой энергии обладает вариант В с утилизацией теплоты вытяжного воздуха; для нормализации акустического режима требуются дополнительные меры по шумозащите вентиляторной установки.

Постоянно работающая вентиляция квартир с использованием приточных клапанов (вариант Б), встроенных в створки окон или наружные стены, при низких температурах наружного воздуха может привести к тепловому дискомфорту, связанному с неравномерным распределением температуры и скорости движения воздуха в помещениях. Несмотря на то что рекомендуется располагать приточные клапаны над или за отопительными приборами, специалисты в Западной Европе ограничивают эффективную область применения таких систем вентиляции районами с температурой наружного воздуха не ниже -10 °С. Наибольший интерес представляет вариант вентиляции В, т. е. механическая приточно-вытяжная вентиляция с утилизацией теплоты удаляемого воздуха в рекуперативных теплообменниках. Именно по этой системе произведено проектирование и строительство экспериментальной системы.

Экспериментальное здание состоит из четырех секций; общее количество квартир - 264. Под зданием размещен гараж-стоянка на 94 автомобиля. На 1-м этаже находятся вспомогательные нежилые помещения, два верхних этажа отведены под спортивно-оздоровительный центр. Жилые квартиры располагаются со 2-го по 16-й этаж. В квартирах свободной планировки от 60 до 200 м2 общей площади предусмотрены, помимо жилых помещений, кухня, ванная комната с санузлом, постирочная, гостевой туалет, кладовые помещения, застекленные лоджии. Здание построено по индивидуальному проекту (архитектор П. П. Пахомов). Конструктивные решения здания представляют собой монолит с эффективным утеплителем с кирпичной облицовкой. Концепция энергосберегающих решений здания разработана под руководством президента Ассоциации инженеров по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизики, профессора Ю. А. Табунщикова, архитектурной мастерской «Архитекторы-XXI век», ОАО «ЦНИИПРОМЗДАНИЙ», ООО «НПО “ТЕРМЭК”».

Проектом предусмотрено комплексное решение, в котором функционально связаны энергосберегающие архитектурно-планировочные решения, эффективные ограждающие конструкции и инженерные системы нового поколения.

Конструкции здания имеют высокий уровень теплозащиты. Так, сопротивление теплопередаче стен составляет 3,33 м2 °С/Вт, металлопластиковых окон с двухкамерными стеклопакетами - 0,61 м2*°С/Вт, верхних покрытий - 4,78 м2 °С/Вт, лоджии застеклены солнцезащитными тонированными стеклами.

Внутренние параметры воздуха для холодного периода приняты следующими: – жилые комнаты - 20 °С; – кухня - 18 °С; – ванная - 25 °С; – туалет - 18 °С.

В здании запроектирована горизонтальная поквартирная система отопления с периметральной разводкой трубопроводов по квартире. Металлопластиковые трубы с теплоизоляцией в защитной гофре замоноличены в подготовку «черного» пола. На все здание общей площадью около 44 тыс. м2 в системе отопления жилой части всего четыре пары стояков (подающий и обратный) по числу секций. На каждом этаже в лифтовом холле к стоякам присоединены распределительные коллекторы к квартирам. Коллекторы оборудованы арматурой, балансировочными вентилями и квартирными счетчиками теплоты.

В здании запроектирована и реализована поквартирная регулируемая приточно-вытяжная система вентиляции с утилизацией теплоты удаляемого воздуха.

Компактный приточно-вытяжной агрегат с пластинчатым рекуператором размещен в подшивном потолке гостевого туалета рядом с кухней.

Забор приточного воздуха осуществляется через теплоизолированный воздуховод и отверстие в наружной стене, выходящей на лоджию кухни. Удаляемый воздух забирается из помещения кухни. Вытяжка из туалетов и ванной комнаты не теплоутилизируется, т. к. на момент согласования проекта нормативы запрещали объединять в пределах квартиры в одну вентиляционную сеть вытяжки кухни, ванной комнаты и туалета. В настоящее время согласно «Техническим рекомендациям по организации воздухообмена в квартирах многоэтажного жилого дома» это ограничение снято.

В условиях свободной планировки квартир объединение общим горизонтальным вытяжным воздуховодом трех-четырех зон требует специальных архитектурно-планировочных решений, устройства в квартире горизонтальной сети воздуховодов, что трудно осуществимо по конструктивным соображениям.

В отопительный период 2003-2004 годов в 3-комнатной квартире на 12-м этаже были проведены предварительные испытания квартирной системы вентиляции с утилизацией теплоты удаляемого воздуха. Общая площадь квартиры составляет 125 м2. Испытания проводились в квартире без отделки, без межкомнатных перегородок и дверей. Выборочные результаты испытаний приведены в табл. 22. Температура наружного воздуха 4 составляла от +4,1 до -4,5 °С при преимущественно облачной погоде. Температура воздуха в помещении tB поддерживалась квартирной системой отопления со стальными радиаторами, оборудованными термостатическими вентилями, в диапазоне от 22,8 до 23,7 °С. В ходе испытаний с помощью увлажнителей воздуха изменялась относительная влажность воздуха ф от 25 до 45%.

В квартире был установлен рекуперативный теплоутилизатор, максимальной производительностью по приточному воздуху Lnp = 430 м3/ч. Объем удаляемого воздуха Ь„игутл составлял примерно 60-70% от приточного, что обусловлено настройкой аппарата на утилизацию только части удаляемого воздуха.
Аппарат оборудован воздушными фильтрами приточного и вытяжного тракта и двумя электрическими нагревателями. Первый нагреватель номинальной мощностью 0,6 кВт предназначен для защиты вытяжного тракта от замораживания конденсата, который специальной дренажной трубкой через гидрозатвор отводится в канализацию. Второй нагреватель мощностью 1,5 кВт предназначен для догрева приточного воздуха tw до заданного комфортного значения.

Рис. 46. План квартиры с системой вентиляции: 1 – приточно-вытяжная установка с утилизатором; 2 – воздухозабор с лоджии; 3 – вытяжка из кухни; 4 – вытяжка из гостевого туалета; 5 – вытяжка из гардеробной; 6 - вытяжка из ванной; 7 - потолочный перфорированный воздухораспределитель

Для простоты монтажа он также выполнен электрическим.

В процессе испытания проводились измерения температуры и влажности наружного, внутреннего и удаляемого воздуха, расхода приточного и удаляемого воздуха, расхода теплоты квартирной системой отопления Qm по показаниям теплосчетчика, расхода электроэнергии.

Теплоутилизатор оборудован системой автоматики с контроллером и пультом управления. Система автоматики предусматривает включение первого нагревателя при достижении температуры стенки теплообменника ниже +1 °С, второй нагреватель может включаться и отключаться, обеспечивая постоянство заданной температуры приточного воздуха, которая находилась в процессе испытаний в диапазоне от 15 до 18,3 °С. Система управления вентиляторами позволяет выбрать три фиксированных режима расхода воздуха, соответствующих кратности воздухообмена от 0,48 до 1,15 1/ч.

Контроль и задание температуры и расхода воздуха осуществляется с дистанционного проводного пульта управления.

Испытания показали устойчивую работу квартирной системы вентиляции и энергетическую эффективность утилизации теплоты удаляемого воздуха.

Следует отметить ряд особенностей в проведении исследований, которые нельзя не принимать во внимание при оценке показателей воздушно-теплового режима квартиры.

1. В новостройках свежий бетон и раствор выделяют значительное количество влаги в помещения. Период, в течение которого влага в строительных конструкциях приходит в равновесное состояние, достигает 1,5-2 лет. Так, в результате испытаний примерно через полгода после заполнения монолита и укладки стяжки влагосодержание внутреннего воздуха при наличии вентиляции составляло 4-4,5 г/кг сухого воздуха, в то время как влагосодержание наружного воздуха не превышало 1-1,5 г/кг сухого воздуха.

По нашим оценкам, в монолитном здании для приведения конструкций в равновесное влажностное состояние необходимо ассимилировать до 200 кг влаги на каждый кв. метр площади пола. Количество теплоты, необходимое для испарения этой влаги, в начальный период равно 10-15 Вт/м2, а в период испытаний - 5-7 Вт/м2, что составляет значительную часть в тепловом балансе квартиры в холодный период года. Не учитывать этот фактор при осуществлении отопления и вентиляции опрометчиво, особенно в монолитном домостроении.

2. В процессе испытаний отсутствовали так называемые внутренние бытовые тепловыделения, размер которых в нормативах предлагается принимать 10 Вт/м2.
Представляется, что этот показатель должен быть дифференцированным в зависимости от площади квартиры на одного жителя.

В больших квартирах (более 100 м2) с площадью на одного человека 30-50 м2 вероятное значение этого показателя должно снижаться до 5-8 Вт/м2. В противном случае проектная тепловая мощность систем отопления и вентиляции зданий может оказаться заниженной на 10-30%.

Однако более целесообразно во время строительства, в частности зданий с монолитными конструкциями, выделяющими в помещения много влаги, перед сдачей зданий и особенно перед их заселением производить просушку с помощью находящихся в распоряжении строителей мощных электронагревателей. К сожалению, такая просушка до проведения испытаний не производилась.

Как отмечалось, рассматриваемое экспериментальное здание проектировалось и строилось как энергосберегающее. По результатам проведенных испытаний с поправками на прогнозируемые бытовые тепловыделения и теплоту испарения влаги в строительных конструкциях были рассчитаны удельные теплоэнергетические характеристики 3-комнатной квартиры в расчете на 1 м2 площади при поддержании в квартире температуры 20 °С.

Результаты расчетов показали, что после отделки квартир и заселения здания удельный расчетный годовой расход теплоты на отопление и вентиляцию снижается почти вдвое со 132 до 70 кВт ч/(м2 год), а с применением утилизации теплоты до 44 кВт ч/(м2 год).

Дальнейшая эксплуатация здания позволит проверить принятые в предварительных расчетах допущения.

Исследования экспериментальной системы должны охватить все факторы, характеризующие ее работу, в том числе и психологическое отношение жильцов, использующих новые для них устройства.

Электроподогрев воздуха в экспериментальной системе по сравнению с использованием для этой цели теплоты от теплофикации, к которой присоединено здание, экономически неоправдан. Такое решение было принято для удобства эксперимента, в частности, для замеров, касающихся расходов теплоты. Однако, по мнению авторов, со временем человечество начнет переходить на полное электротеплоснабжение жилых городских зданий. Поэтому экспериментальное исследование системы, в которой квартирная вентиляция работает с использованием электровоздухонагревателей, представляет интерес для будущего.

Затраты теплоты на подогрев санитарной нормы приточного наружного воздуха при современных методах теплозащиты ограждающих конструкций составляют в жилых домах до 80 % тепловой нагрузки на отопительные приборы, а в общественно-административных зданиях - более 90%. Поэтому энергосберегающие системы отопления в современных конструкциях зданий могут быть созданы только при условии

утилизации теплоты вытяжного воздуха на нагрев санитарной нормы приточного наружного воздуха.

Также успешен опыт применения в административном здании в Москве установки утилизации с насосной циркуляцией промежуточного теплоносителя - антифриза.

При расположении приточных и вытяжных агрегатов на расстоянии более 30 м друг от друга система утилизации с насосной циркуляцией антифриза является наиболее рациональной и экономичной. В случае расположения их рядом возможно еще более эффективное решение. Так в климатических районах с мягкими зимами, когда температура наружного воздуха не опускаются ниже -7 °С, широко применяются пластинчатые теплоутилизаторы.

На рис. 1 показана конструктивная схема пластинчатого рекуперативного (теплоотдача осуществляется через разделительную стенку) теплоутилизационного теплообменника. Здесь показан (рис. 1, а) «воздухо-воздушный» теплоутилизатор, собранный из пластинчатых каналов, которые могут изготавливаться из тонкой листовой оцинкованной стали, алюминия и др.

Рисунок 1. а - пластинчатые каналы, в которых сверху над разделительными стенками каналов поступает вытяжной воздух L y , а горизонтально-приточный наружный воздух L п.н; б - трубчатые каналы, в которых сверху в трубках проходит вытяжной воздух L y , а горизонтально в межтрубном пространстве проходит приточный наружный воздух L п.н

Пластинчатые каналы заключаются в кожух, имеющий фланцы для присоединения к приточным и вытяжным воздуховодам.

На рис. 1, б показан «воздухо-воздушный» теплообменник из трубчатых элементов, которые могут быть также изготовлены из алюминия, оцинкованной стали, пластмассы, стекла и др. Трубы закрепляются в верхние и нижние трубные решетки, что формирует каналы для прохода вытяжного воздуха. Боковые стенки и трубные решетки образуют каркас теплообменника, с открытыми фасадными сечениями, которые присоединяются к воздуховоду поступления приточного наружного воздуха L п.н.

Благодаря развитой поверхности каналов и устройства в них турбулизирующих воздух насадок в таких «воздухо-воздушных» теплообменниках достигается высокая теплотехническая эффективность θ t п.н (до 0,75), и это является главным достоинством таких аппаратов.

Недостатком этих рекуператоров является необходимость предподогрева приточного наружного воздуха в электрокалориферах до температуры не ниже -7 °С (во избежание замерзания конденсата на стороне влажного вытяжного воздуха).

На рис. 2 показана конструктивная схема приточно-вытяжного агрегата с пластинчатым утилизатором теплоты вытяжного воздуха L у на нагрев приточного наружного воздуха L п.н. Приточный и вытяжной агрегаты выполняются в едином корпусе. Первыми на входе приточного наружного L п.н и удаляемого вытяжного L у воздуха установлены фильтры 1 и 4. Оба очищенных потока воздуха от работы приточного 5 и вытяжного 6 вентиляторов проходят через пластинчатый теплоутилизатор 2, где энергия отепленного вытяжного воздуха L у передается холодному приточному L п.н.

Рисунок 2. Конструктивная схема приточного и вытяжного агрегатов с пластинчатым утилизатором, имеющим обводной воздушный канал по приточному наружному воздуху: 1 - воздушный фильтр в приточном агрегате; 2 - пластинчатый утилизационный теплообменник; 3 - фланец присоединения воздушного тракта поступления вытяжного воздуха; 4 - фильтр карманный для очистки вытяжного воздуха L у; 5 - приточный вентилятор с электродвигателем на одной раме; 6 - вытяжной вентилятор с электродвигателем на одной раме; 7 - поддон сбора из каналов прохождения вытяжного воздуха сконденсированной влаги; 8 - трубопровод отвода конденсата; 9 - обводной воздушный канал для прохода приточного воздуха L п.н; 10 - автоматический привод воздушных клапанов в обводном канале; 11 - калорифер догрева приточного наружного воздуха, питаемый горячей водой

Как правило, вытяжной воздух имеет повышенное влагосодержание и температуру точки росы не ниже +4 °С. При поступлении в каналы теплоутилизатора 2 холодного наружного воздуха с температурой ниже +4 °С на разделительных стенках установится температура, при которой на части поверхности каналов со стороны движения удаляемого вытяжного воздуха будет происходить конденсация водяных паров.

Образовавшийся конденсат под воздействием потока воздуха L у, будет интенсивно стекать в поддон 7, откуда по присоединенному к патрубку 8 трубопроводу отводится в канализацию (или бак-накопитель).

Для пластинчатого утилизатора характерно следующее уравнение теплового баланса переданной теплоты к наружному приточному воздуху:

где Q ту - утилизируемая приточным воздухом теплоэнергия; L у, L п.н - расходы отепленного вытяжного и наружного приточного воздуха, м 3 /ч; ρ у, ρ п.н - удельные плотности отепленного вытяжного и наружного приточного воздуха, кг/м 3 ; I y 1 и I y 2 - начальная и конечная энтальпия отепленного вытяжного воздуха, кДж/кг; t н1 и t н2 , с р - начальные и конечные температуры, °С, и теплоемкость, кДж/(кг · °С), наружного приточного воздуха.

При низких начальных температурах наружного воздуха t н.х ≈ t н1 на разделительных стенках каналов выпадающий из вытяжного воздуха конденсат не успевает стекать в поддон 7, а замерзает на стенках, что приводит к сужению проходного сечения и увеличивает аэродинамическое сопротивление проходу вытяжного воздуха. Это увеличение аэродинамического сопротивления воспринимается датчиком, который передает команду на привод 10 на открытие воздушных клапанов в обводном канале (байпасе) 9.

Испытания пластинчатых утилизаторов в климате России показали, что при снижении температуры наружного воздуха до t н.х ≈ t н1 ≈ -15 °С, воздушные клапаны в байпасе 9 полностью открыты и весь приточный наружный воздух L п.н проходит, минуя пластинчатые каналы теплоутилизатора 2.

Нагрев приточного наружного воздуха L п.н от t н.х до t п.н осуществляется в калорифере 11, питаемом горячей водой из центрального источника теплоснабжения. В этом режиме Q ту, вычисляемое по уравнению (9.10), равно нулю, так как через присоединенный теплоутилизатор 2 проходит только вытяжной воздух и I y 1 ≈ I y 2 , т.е. утилизация теплоты отсутствует.

Вторым методом предотвращения замерзания конденсата в каналах теплообменника 2 является электрический предподогрев приточного наружного воздуха от t н.х до t н1 = -7 °С. В расчетных условиях холодного периода года в климате Москвы холодный приточный наружный воздух в электрокалорифере нужно нагревать на ∆t т.эл = t н1 - t н.х = -7 + 26 = 19 °С. Нагрев приточного наружного воздуха при θ t п.н = 0,7 и t у1 = 24 °С составит t п.н = 0,7 · (24 + 7) - 7 = 14,7 °С или ∆t т.у = 14,7 + 7 = 21,7 °С.

Расчет показывает, что в этом режиме нагрев в теплоутилизаторе и в калорифере практически одинаков. Использование байпаса или электрического предподогрева значительно снижает теплотехническую эффективность пластинчатых теплообменников в системах приточно-вытяжной вентиляции в климате России.

Для устранения этого недостатка отечественными специалистами разработан оригинальный метод быстрого периодического размораживания пластинчатых теплоутилизаторов путем подогрева удаляемого вытяжного воздуха, обеспечивающий надежную и энергоэффективную круглогодовую работу агрегатов.

На рис. 3 показана принципиальная схема установки утилизации теплоты вытяжного воздуха X на нагрев приточного наружного воздуха L п.н с быстрым устранением обмерзания каналов 2 для улучшения прохода удаляемого воздуха через пластинчатый теплоутилизатор 1.

Воздуховодами 3 теплоутилизатор 1 соединен с трактом прохождения приточного наружного воздуха L п.н, а воздуховодами 4 с трактом прохождения удаляемого вытяжного воздуха L у.

Рисунок 3. Принципиальная схема применения пластинчатого теплоутилизатора в климате России: 1 - пластинчатый теплоутилизатор; 2 - пластинчатые каналы для прохода холодного приточного наружного воздуха L п.н и теплого вытяжного удаляемого воздуха L у; 3 - присоединительные воздуховоды прохода приточного наружного воздуха L п.н; 4 - присоединительные воздуховоды прохода удаляемого вытяжного воздуха L у; 5 - калорифер в потоке удаляемого воздуха L у на входе в каналы 2 пластинчатого теплообменника 1,6- автоматический клапан на трубопроводе подачи горячей воды G w г; 7 - электрическая связь; 8 - датчик контроля сопротивления воздушного потока в каналах 2 для прохода вытяжного воздуха L у; 9 - отвод конденсата

При низких температурах приточного наружного воздуха (t н1 = t н. x ≤ 7 °С) через стенки пластинчатых каналов 2 теплота от вытяжного воздуха передается полностью теплоте, отвечающей уравнению теплового баланса [см. формулу (1)]. Снижение температуры вытяжного воздуха происходит с обильной конденсацией влаги на стенках пластинчатых каналов. Часть конденсата успевает стечь из каналов 2 и по трубопроводу 9 удаляется в канализацию (или бак-накопитель). Однако большая часть конденсата замерзает на стенках каналов 2. Это вызывает возрастание перепада давления ∆Р у в потоке удаляемого воздуха, замеряемого датчиком 8.

При возрастании ∆Р у до настроенной величины от датчика 8 через проводную связь 7 последует команда на открытие автоматического клапана 6 на трубопроводе подачи горячей воды G w г в трубки калорифера 5, установленного в воздуховоде 4 поступления удаляемого вытяжного воздуха в пластинчатый утилизатор 1. При открытом автоматическом клапане 6 в трубки калорифера 5 поступит горячая вода G w г, что вызовет повышение температуры удаляемого воздуха t y 1 до 45-60 °С.

При прохождении по каналам 2 удаляемого воздуха с высокой температурой произойдет быстрое оттаивание со стенок каналов наледей и образующийся конденсат по трубопроводу 9 стечет в канализацию (или в бак-накопитель конденсата).

После оттайки наледей перепад давлений в каналах 2 понизится и датчик 8 через связь 7 подаст команду на закрытие клапана 6 и подача горячей воды в калорифер 5 прекратится.

Рассмотрим процесс утилизации теплоты на I-d диаграмме, представленный на рис. 4.

Рисунок 4. Построение на I-d-диаграмме режима работы в климате Москвы установки утилизации с пластинчатым теплообменником и размораживанием его по новому методу (по схеме на рис. 3). У 1 -У 2 - расчетный режим извлечения теплоты из вытяжного удаляемого воздуха; Н 1 - Н 2 - нагрев утилизируемой теплотой приточного наружного воздуха в расчетном режиме; У 1 - У под 1 - нагрев вытяжного воздуха в режиме размораживания от наледей пластинчатых каналов прохождения удаляемого воздуха; У 1. раз - начальные параметры удаляемого воздуха после отдачи теплоты на оттаивание наледей на стенках пластинчатых каналов; H 1 -Н 2 - нагрев приточного наружного воздуха в режиме размораживания пластинчатого утилизационного теплообменника

Проведем оценку влияния метода размораживания пластинчатых теплоутилизаторов (по схеме на рис. 3) на теплотехническую эффективность режимов утилизации теплоты вытяжного воздуха на следующем примере.

ПРИМЕР 1. Исходные условия: В крупном московском (t н.х = -26 °С) производственно-административном здании в системе приточно-вытяжной вентиляции смонтирована теплоутилизационная установка (ТУУ) на базе рекуперативного пластинчатого теплообменника (с показателем θ t п.н = 0,7). Объем и параметры удаляемого вытяжного воздуха в процессе охлаждения составляют: L у = 9000 м 3 /ч, t у1 = 24 °С, I y 1 = 40 кДж/кг, t р.у1 = 7 °С, d у1 = 6,2 г/кг (см. построение на I-d-диаграмме на рис. 4). Расход приточного наружного воздуха L п.н = 10 000 м 3 /ч. Размораживание теплоутилизатора производится методом периодического повышения температуры удаляемого воздуха, как это показано на схеме рис. 3.

Требуется: Установить теплотехническую эффективность режимов утилизации теплоты с использованием нового метода периодической оттайки пластин аппарата.

Решение: 1. Вычисляем температуру нагретого утилизируемой теплотой приточного наружного воздуха в расчетных условиях холодного периода года при t н.х = t н1 = -26 °С:

2. Вычисляем количество утилизируемой теплоты за первый час работы установки утилизации, когда обмерзание пластинчатых каналов не повлияло на теплотехническую эффективность, но повысило аэродинамическое сопротивление в каналах прохождения удаляемого воздуха:

3. Через час работы ТУУ в расчетных зимних условиях на стенках каналов накопился слой инея, который вызвал повышение аэродинамического сопротивления ∆Р у. Определим возможное количество льда на стенках каналов прохода вытяжного воздуха через пластинчатый теплоутилизатор, образованного в течение часа. Из уравнения теплового баланса (1) вычислим энтальпию охлажденного и осушенного вытяжного воздуха:

Для рассматриваемого примера по формуле (2) получим:

На рис. 4 представлено построение на I-d-диаграмме режимов нагрева приточного наружного воздуха (процесс H 1 - H 2) утилизируемой теплотой вытяжного воздуха (процесс У 1 -У 2). Построением на I-d-диаграмме получены остальные параметры охлажденного и осушенного вытяжного воздуха (см. точку У 2): t у2 = -6,5 °С, d у2 = 2,2 г/кг.

4. Количество выпавшего из вытяжного воздуха конденсата вычисляется по формуле:

По формуле (4) вычисляем количество холода, затраченного на понижение температуры льда: Q = 45 · 4,2 · 6,5/3,6 = 341 Вт · ч. На образование льда затрачивается следующее количество холода:

Общее количество энергии, идущей на образование наледей на разделительной поверхности пластинчатых теплоутилизаторов, составит:

6. Из построения на I-d-диаграмме (рис. 4) видно, что при противоточном движении по пластинчатым каналам приточного L п.н и вытяжного L у воздушных потоков на входе в пластинчатый теплообменник наиболее холодного наружного воздуха по другую сторону разделительных стенок пластинчатых каналов проходит охлажденный до отрицательных температур вытяжной воздух. Именно в этой части пластинчатого теплообменника и наблюдаются интенсивные образования наледей и инея, которые будут перекрывать каналы для прохода вытяжного воздуха. Это вызовет повышение аэродинамического сопротивления.

Датчик контроля при этом подаст команду на открытие автоматического клапана поступления горячей воды в трубки теплообменника, смонтированного в вытяжном воздуховоде до пластинчатого теплообменника, что обеспечит нагрев вытяжного воздуха до температуры t у.под.1 = +50 °С.

Поступление горячего воздуха в пластинчатые каналы обеспечило за 10 мин оттайку замерзшего конденсата, который в жидком виде удаляется в канализацию (в бак-накопитель). За 10 мин нагрева вытяжного воздуха затрачено следующее количество теплоты:

или по формуле (5) получим:

7. Подведенная в калорифере 5 (рис. 3) теплота частично расходуется на растаивание наледей, что по расчетам в п. 5 потребует Q т.рас = 4,53 кВт · ч теплоты. На передачу теплоты к приточному наружному воздуху из затраченной теплоты в калорифере 5 на нагрев вытяжного воздуха останется теплоты:

8. Температура подогретого вытяжного воздуха после затраты части теплоты на размораживание вычисляется по формуле:

Для рассматриваемого примера по формуле (6) получим:

9. Подогретый в калорифере 5 (см. рис. 3) вытяжной воздух будет способствовать не только размораживанию наледей конденсата, но и увеличению передачи теплоты к приточному воздуху через разделительные стенки пластинчатых каналов. Вычислим температуру нагретого приточного наружного воздуха:

10. Количество теплоты, переданной на нагрев приточного наружного воздуха в течение 10 мин размораживания, вычисляется по формуле:

Для рассматриваемого режима по формуле (8) получим:

Расчет показывает, что в рассматриваемом режиме размораживания нет потерь теплоты, так как часть теплоты подогрева из удаляемого воздуха Q т.у =12,57 кВт · ч переходит на дополнительный догрев приточного наружного воздуха L п.н до температуры t н2.раз = 20,8 °С, вместо t н2 = +9 °С при использовании только теплоты вытяжного воздуха с температурой t у1 = +24 °С (см. п. 1).

2006-02-08

Необходимость энергосбережения при проектировании, строительстве и эксплуатации зданий любого назначения не подлежит сомнению и связана в первую очередь с исчерпанием запасов органического топлива и, как следствие, его непрерывным удорожанием. Особое внимание при этом необходимо уделять сокращению затрат теплоты именно на системы вентиляции и кондиционирования воздуха, поскольку доля этих расходов в общем энергетическом балансе может быть даже выше, чем трансмиссионные теплопотери, в первую очередь в общественных и промышленных зданиях и после повышения теплозащиты наружных ограждений .


Одно из наиболее перспективных, малозатратных и быстроокупаемых энергосберегающих мероприятий в системах механической вентиляции и кондиционирования — это утилизация теплоты вытяжного воздуха для частичного подогрева притока в холодный период года. Для осуществления теплоутилизации используются аппараты различных конструкций, в т.ч. пластинчатые перекрестноточные рекуперативные теплообменники и регенераторы с вращающимся ротором, а также устройства с так называемыми тепловыми трубами (термосифоны).

Однако можно показать, что в условиях сложившегося в РФ уровня цен на вентиляционное оборудование и, главным образом, ввиду практического отсутствия собственного производства перечисленных типов устройств, с техникоэкономической точки зрения целесообразно рассматривать утилизацию теплоты только на базе аппаратов с промежуточным теплоносителем. Такая конструкция, как известно, обладает целым рядом преимуществ .

Во-первых, для ее реализации используется серийное оборудование, поскольку здесь приточная установка дополняется только калорифером-утилизатором, а вытяжная — охладителем-утилизатором, которые конструктивно аналогичны обычным калориферам и охладителям. Это особенно существенно, поскольку в РФ имеется ряд предприятий, ведущих собственное производство рассматриваемых изделий, в т.ч. такие крупные, как ООО «Веза ».

Кроме того, теплоутилизационное оборудование данного типа очень компактно, а соединение приточного и вытяжного агрегатов только через циркуляционный контур с промежуточным теплоносителем позволяет выбирать место для их размещения практически независимо друг от друга. В качестве теплоносителя обычно используются низкозамерзающие жидкости типа антифризов, причем небольшой объем циркуляционного контура позволяет пренебречь затратами на антифриз, а герметичность контура и нелетучесть антифриза делают второстепенным вопрос о его токсичности.

Наконец, отсутствие непосредственного контакта потоков подаваемого и удаляемого воздуха не накладывает ограничений на чистоту вытяжки, что практически безгранично расширяет группу зданий и помещений, где можно применять теплоутилизацию. В качестве недостатка обычно указывают не слишком высокую температурную эффективность, не превышающую 50-55% .

Но это как раз тот случай, когда вопрос о целесообразности использования теплоутилизации должен решаться технико-экономическим расчетом, о чем мы и будем говорить далее в нашей статье. Можно показать, что срок окупаемости дополнительных капитальных затрат по устройству теплоутилизации с промежуточным теплоносителем не превышает трех-четырех лет.

Это особенно существенно в условиях нестабильной рыночной экономики с заметно меняющимся уровнем цен на оборудование и тарифов на энергетические ресурсы, что не позволяет применять капиталоемкие инженерные решения. Однако остается открытым вопрос об экономически наиболее целесообразной температурной эффективности такого теплоутилизационного оборудования k эф, т.е. доли теплоты, затрачиваемой на подогрев притока за счет теплоты вытяжного воздуха, по отношению к общей тепловой нагрузке. Обычно используемые значения данного параметра лежат в диапазоне от 0,4 до 0,5. Сейчас мы покажем, на каком основании приняты указанные значения.

Эта проблема будет рассмотрена на примере приточно-вытяжной вентиляционной установки производительностью 10 000 м 3 /ч, использующей оборудование ООО «Веза». Данная задача является оптимизационной, поскольку сводится к выявлению значения k эф, обеспечивающего минимум совокупных дисконтированных затрат СДЗ на устройство и эксплуатацию вентиляционного оборудования.

Расчет следует вести при условии использования заемных средств на сооружение вентустановок и приведения СДЗ к концу рассматриваемого временного интервала Т по следующей формуле :

где К — общие капитальные затраты, руб; Э — суммарные годовые эксплуатационные издержки, руб/год; p — норма дисконта, %. При вычислениях ее можно принимать равной ставке рефинансирования ЦБ РФ. С 15 января 2004 г. эта величина равна 14% годовых. В данном случае удается исследовать задачу в достаточно полном объеме сравнительно элементарными средствами, поскольку все составляющие затрат легко учитываются и достаточно просто вычисляются.

Впервые решение этой задачи было опубликовано автором в работе для уровня цен и тарифов, действовавших на тот момент. Однако, как легко будет убедиться, при пересчете на более поздние данные основные выводы сохраняют свою силу. Одновременно мы покажем, как следует осуществлять сам технико-экономический расчет при необходимости выбора оптимального варианта инженерного решения, поскольку все другие задачи будут отличаться только определением величины К.

Но это легко делается по каталогам и прайслистам предприятий-производителей соответствующего оборудования. В нашем примере капитальные затраты определялись по данным компании «Веза», исходя из производительности и принятого набора секций приточной и вытяжной установок: передняя панель с одним вертикальным клапаном,фильтр ячейковый класса G3, вентиляторный блок; кроме того, в приточной установке также дополнительно воздухонагреватель системы теплоутилизации и догревающий калорифер с теплоснабжением от теплосети, а в вытяжной — воздухоохладитель системы теплоутилизации, а также циркуляционный насос.Схема такой установки показана на рис. 1. Расходы на монтаж и наладку вентиляционных агрегатов принимались в размере 50% от основных капиталовложений.

Затраты на теплоутилизационное оборудование и догревающий калорифер вычислялись по результатам расчетов на ЭВМ по программам компании «Веза» в зависимости от эффективности утилизатора. При этом с ростом эффективности величина К растет, поскольку число рядов трубок теплообменников системы утилизации увеличивается быстрее (для k эф = = 0,52 — до 12 в каждой установке), чемсокращается число рядов догревающего калорифера (с 3 до 1 в тех же условиях).

Эксплуатационные издержки складываются из годовых затрат соответственно на тепловую и электрическую энергию и амортизационные отчисления. При их расчете продолжительность работы установки в течение суток в расчетах принималась равной 12 ч, температура воздуха за догревающим калорифером +18°С, а после теплоутилизатора — в зависимости от k эф через среднюю наружную температуру за отопительный период и температуру вытяжного воздуха.

Последняя по умолчанию равна +24,7°С (программа подбора теплоутилизаторов ООО «Веза»). Тариф на тепловую энергию принимался по данным ОАО «Мосэнерго» на середину 2004 г. в размере 325 руб/Гкал (для бюджетных потребителей). Очевидно, что с ростом k эф величина затрат на тепловую энергию уменьшается, что, вообще говоря, и является целью теплоутилизации.

Затраты на электроэнергию рассчитываются через электрическую мощность, требуемую для привода циркуляционного насоса системы теплоутилизации и вентиляторов приточной и вытяжной установок. Эта мощность определяется, исходя из потерь давления в циркуляционном контуре, плотности и расхода промежуточного теплоносителя, а также аэродинамического сопротивления вентиляционных установок и сетей. Все перечисленные величины, кроме плотности теплоносителя, принятой равной 1200 кг/м 3 , вычисляются по программам подбора теплоутилизационного и вентиляционного оборудования ООО «Веза». Кроме того, в выражениях для мощности участвуют также коэффициенты полезного действия применяемых насосов и вентиляторов.

В расчетах использовались средние значения: 0,35 для насосов типа GRUNDFOS с мокрым ротором и 0,7 для вентиляторов типа RDН. Тариф на электроэнергию учитывался по данным ОАО «Мосэнерго» на середину 2004 г. в размере 1,17 руб/(кВт ֹч). При увеличении k эф уровень затрат на электроэнергию возрастает, поскольку с ростом числа рядов утилизационных теплообменников повышается их сопротивление потоку воздуха, а также потери давления в циркуляционном контуре промежуточного теплоносителя.

Однако в целом данная составляющая расходов существенно меньше затрат на тепловую энергию. Амортизационные отчисления также возрастают с увеличением k эф постольку, поскольку при этом увеличиваются капитальные затраты. Расчет этих отчислений проводится исходя из обеспечения затрат на полное восстановление, капитальный и текущий ремонт оборудования, с учетом расчетного срока службы оборудования ТАМ, принятого при вычислениях равным 15 годам.

В целом, однако, суммарные эксплуатационные затраты с ростом эффективности утилизации уменьшаются. Поэтому возможно существование минимума СДЗ при том или ином уровне k эф и фиксированном значении Т. Результаты соответствующих расчетов показаны на рис. 2. На графиках легко можно видеть, что минимум на кривой СДЗ появляется практически при любом горизонте расчета, который по смыслу задачи равен требуемому сроку окупаемости.

Это означает, что при существующих ценах на оборудование и тарифах на энергетические ресурсы любые, даже самые незначительные капиталовложения в теплоутилизацию окупаются, и достаточно быстро. Поэтому утилизация теплоты с промежуточным теплоносителем оправдана практически всегда. С ростом предполагаемого срока окупаемости минимум на кривой СДЗ быстро смещается в область более высокой эффективности, достигая 0,47 при Т = Т АМ = 15 лет.

Понятно, что оптимальным значением k эф для принятого срока окупаемости будет то, при котором наблюдается минимум СДЗ. График зависимости такого оптимального значения k эф от Т приведен на рис. 3. Поскольку более длительный срок окупаемости, превышающий расчетный срок службы оборудования, вряд ли оправдан, следует, видимо, остановиться на уровне k эф = 0,4-0,5, тем более что при дальнейшем росте Т увеличение оптимальной эффективности резко замедляется.

Кроме того, следует учесть, что рассматриваемый способ теплоутилизации при любой поверхности теплообмена и расходе теплоносителя вообще принципиально не может обеспечить величину k эф выше 0,52-0,55, что и подтверждается расчетом по программе компании «Веза». Если принять тариф на тепловую энергию как для коммерческих потребителей в размере 547 руб/Гкал, снижение годовых издержек за счет теплоутилизации будет выше, поэтому график на рис. 3 показывает верхний предел возможного срока окупаемости.

Таким образом, указанный диапазон значений k эф от 0,4 до 0,5 находит полное технико-экономическое обоснование. Поэтому основной практической рекомендацией по итогам приведенного исследования является возможно более широкое использование утилизации теплоты вытяжного воздуха с промежуточным теплоносителем в любых зданиях, где предусматривается механическая приточно-вытяжная вентиляция и кондиционирование воздуха, с выбором коэффициента температурной эффективности, близкого к максимально возможному для данного типа установок. Другой рекомендацией является обязательный для рыночной экономики учет дисконтирования капитальных и эксплуатационных затрат при технико-экономическом сравнении вариантов инженерных решений по формуле (1).

При этом, если сравниваются только два варианта, как это чаще всего и бывает, удобно сравнивать только дополнительные затраты и считать, что в первом случае К = 0, а во втором, наоборот, Э = 0, а К равно дополнительным вложениям в мероприятия, целесообразность которых обосновывается. Тогда вместо Э в первом варианте нужно использовать разность годовых издержек по вариантам. После этого строятся графики зависимости СДЗ от Т, и в точке их пересечения определяется расчетный срок окупаемости.

Если он оказывается выше Т АМ, или графики вообще не пересекаются, мероприятия экономически необоснованы. Полученные результаты имеют весьма общий характер, поскольку зависимость изменения капитальных затрат от степени утилизации теплоты при существующей ситуации на рынке мало связана с конкретным производителем вентиляционного оборудования, а основное влияние на эксплуатационные издержки вообще оказывают только затраты тепловой и электрической энергии.

Поэтому предлагаемые рекомендации могут быть использованы при принятии экономически обоснованных решений по энергосбережению в любых системах механической вентиляции и кондиционирования воздуха. Кроме того, данные результаты имеют простой и инженерный вид и легко допускают уточнение при изменении действующих цен и тарифов.

Необходимо также заметить, что получающийся в приведенных расчетах срок окупаемости, в зависимости от принятого k эф достигающий величины 15 лет, т.е. вплоть до ТАМ, является в некотором отношении предельным, возникающим при учете всех капитальных затрат. Если же учитывать только дополнительные капиталовложения непосредственно в теплоутилизацию, срок окупаемости действительно сокращается до 3-4 лет, как и было указано выше.

Следовательно, утилизация теплоты вытяжного воздуха с промежуточным теплоносителем действительно является малозатратным и быстроокупаемым мероприятием и заслуживает самого широкого применения в условиях рыночной экономики.

  1. О.Д. Самарин. О нормировании тепловой защиты зданий. Журнал «С.О.К.», №6/2004.
  2. О.Я. Кокорин. Современные системы кондиционирования воздуха.- М.: «Физматлит», 2003.
  3. В.Г. Гагарин. О недостаточной обоснованности повышенных требований к теплозащите наружных стен зданий. (Изменения №3 СНиП II-3–79). Сб. докл. 3-й конф. РНТОС 23–25 апреля 1998 г.
  4. О.Д. Самарин. Экономически целесообразная эффективность теплоутилизаторов с промежуточным теплоносителем. Монтажные и специальные работы в строительстве, №1/2003.
  5. СНиП 23-01–99* «Строительная климатология».- М:ГУП ЦПП, 2004.

Предыстория развития

Тепло воздуха, который удаляется в атмосферу, является источником экономии энергоресурсов. Не секрет, что на подогрев воздуха, который поступает в здание расходуется 40…80% теплозатрат. Поэтому идея подогрева свежего воздуха за счет отработанного не нова. Еще в Советском Союзе непрерывно велись работы по созданию установок, которые бы позволяли использовать тепловую энергию вытяжного воздуха. Но к сожалению результаты этих исследований использовались только в специальных проектах (промышленного, оборонного назначения, научного значения).

За границей причиной применения, обуславливающей начало применения подобных установок, стал первый энергетический кризис. При этом, устройства утилизации тепловой энергии удаляемого воздуха, изначально проектировались для использования в многоквартирных жилых домах и коттеджах. Как следствие этого, сегодня воздушное отопление повсеместно применяется в Канаде и ближайших к ней штатах США. Так в Канаде не применяются вовсе водяные системы отопления.

В России утилизаторы тепла массово начали применяться с началом активного малоэтажного строительства, когда у частных застройщиков начал появляться интерес к энергоэффективному, энергосберегающему оборудованию.

Применение электроэнергии для отопления

Использование вентиляционной отопительной техники подразумевает применение электроэнергии для отопления. До недавнего времени применение электроэнергии для отопления было запрещено законодательно. Это связано с политикой экономии энергии, проводимой в Советском Союзе. Со времени распада Советского Союза многое изменилось.

В настоящее время, когда начинают применяться новые материалы и осваиваться новые технологии, мнение специалистов о допустимости применения электроэнергии для отопления начинает меняться. Ввод в действие 2000 года новых норм, которые требуют улучшения теплозащиты жилых зданий, способствует этому. Согласно новых норм, нормируемые потери тепла через наружные стены сокращаются в 2,5–3,0 раза по сравнению с нормами 1995 г.

В будущем нормы по теплозащите и энергоэффективности будут только ужесточаться. В этих условиях исчезнет само понятие инфильтрации воздуха, помещения будут герметичными. В таких условиях применению устройств утилизации тепла откроются самые широкие перспективы.

Существующие виды рекуператоров

Настоящая номенклатура утилизаторов тепла очень разнообразна. Но все разнообразие можно свести к следующим типам: а) кожухотрубные и пластинчатые теплообменники, в том числе, перекрёстноточные; б) роторные (регенеративные); в) тепловые насосы с промежуточным рабочим телом. Возможности большинства современных устройств позволяют утилизировать и использовать для подогрева подаваемого в помещения воздуха только 60% тепла отработанного воздуха. Для объектов с небольшим объемом здания для того, чтобы установка утилизатора тепла окупилась необходимо, чтобы эта цифра составляла 90 %.

Перспективное направление развития утилизаторов тепла

Увеличить КПД утилизаторов тепла позволяет применение описанного ниже метода. Как известно, теплоемкость воды наибольшая по сравнению с другими жидкостями. Теплоёмкость воздуха в 4,5 раза ниже теплоёмкости воды. На использовании воды основана технология ультра-дисперсии удаляемого воздуха в воде. Для того чтобы увеличить скорость передачи тепла от удаляемого воздуха этот воздух специальным образом пропускают через воду, создавая пузырьки размером с микрон.

Скорость передачи тепла увеличивается так как микронных размеров пузырьки разрушают термическое сопротивления поверхностного слоя воды. Применение технологии технология ультра-дисперсии удаляемого воздуха в воде позволит использовать 90-95% тепла удаляемого воздуха. Важно, что рекуператор, построенный по указанной технологии, имеет минимальное число деталей, минимальные размеры, он прост в эксплуатации.

Способы применения утилизаторов тепла

  • Первый способ – применение теплоутилизатора рекуперативного типа. При этом имеет место частичный подогрев подаваемого в помещение воздуха.
  • Второй способ – утилизация теплоты с помощью тепловых насосов.
  • Третий способ – использование тепла уходящего воздуха для подогрева поступающей воды. Система включает в себя значительного габарита водонагреватели и аккумуляторы подогретой воды.

Современное положение дел в России по рассматриваемому вопросу

Федеральным законом № 261-ФЗ «Об энергосбережении и повышении энергетической эффективности…» предписано снизить энергоемкость инженерных систем здания. Стоит задача к 2020 году снизить энергоемкость ВВП на 40% к уровню 2007 года. Такая тенденция на увеличение энергоэффективности, улучшение теплозащиты повсеместна.

Постановлением Правительства Москвы № 900 от 5 октября 2010 года «О повышении энергетической эффективности жилых, социальных и общественно-деловых зданий в городе Москве…», установлен уровень энергопотребления, обеспечить невозможно без утилизации тепла.

Российская Федерация, вступив в ВТО, обязалась привести цены на энергоносители для внутренних потребителей к уровню мировых цен. Во всем мире вопросы энергоэффективности, а как следствие вопросы утилизации тепла стоят очень остро. Правительства стран вводят в действие и добиваются исполнения программ по улучшению энергоэффективности. Поэтому с ростом внутренних цен на энергоносители неизбежно будет расти интерес к установкам по утилизации тепла

В «русской печи» нагревался приточный воздух, с помощью этого прогревалось жилое помещение. В Европе систему отопления, где как в русской печи предусматривались каналы, называли «русской». Этим признана большая эффективность русской печи в сравнении с европейским отоплением. В настоящее время можно говорить о необходимости вернуться к истокам в вопросах отопления.

Приточно-вытяжная вентиляция с рекуперацией

Одним из источников вторичных энергоресурсов в здании является тепловая энергия воздуха, удаляемого в атмосферу. Расход тепловой энергии на подогрев поступающего воздуха составляет 40...80% теплопотребления, большая ее часть может быть сэкономлена в случае применения так называемых теплообменников-утилизаторов.

Существуют различные типы теплообменников-утилизаторов.

Рекуперативные пластинчатые теплообменники выполняются в виде пакета пластин, установленных таким образом, что они образуют два смежных канала, по одному из которых движется удаляемый, а по другому - приточный наружный воздух. При изготовлении пластинчатых теплообменников такой конструкции с большой производительностью по воздуху возникают значительные технологические трудности, поэтому разработаны конструкции кожухотрубных теплообменников-утилизаторов ТКТ, представляющих собой пучок труб, расположенных в шахматном порядке и заключенных в кожух. Удаляемый воздух движется в межтрубном пространстве, наружный - внутри трубок. Движение потоков перекрестное.

Рис. Теплообменники:
а - пластинчатый утилизатор;
б - утилизатор ТКТ;
в - вращающийся;
г - рекуперативный;
1 - корпус; 2 - приточный воздух; 3 - ротор; 4 - сектор продувной; 5 - вытяжной воздух; 6 - привод.

С целью предохранения от обледенения теплообменники снабжены дополнительной линией по ходу наружного воздуха, через которую при температуре стенок трубного пучка ниже критической (-20°С) перепускается часть холодного наружного воздуха.

Установки утилизации тепла вытяжного воздуха с промежуточным теплоносителем могут применяться системах механической приточно-вытяжной вентиляции, а также в системах кондиционирования воздуха. Установка состоит из расположенного в приточном и вытяжном каналах воздухонагревателя, соединенного замкнутым циркуляционным контуром, заполненным промежуточным носителем. Циркуляция теплоносителя осуществляется посредством насосов. Удаляемый воздух, охлаждаясь в воздухонагревателе вытяжного канала, передает тепло промежуточному теплоносителю, нагревающему приточный воздух. При охлаждении вытяжного воздуха ниже температуры точки росы на части теплообменной поверхности воздухонагревателей вытяжного канала происходит конденсация водяного пара, что приводит к возможности образования наледи при отрицательных начальных температурах приточного воздуха.

Установки утилизации тепла с промежуточным теплоносителем могут работать либо в режиме, допускающем образование наледи на теплообменной поверхности вытяжного воздухонагревателя в течение суток при последующем отключении и оттаивании, либо, если отключение установки недопустимо, при применении одного из следующих мероприятий по защите воздухонагревателя вытяжного канала от образования наледи:

  • предварительного нагрева приточного воздуха до положительной температуры;
  • создание байпаса по теплоносителю или приточному воздуху;
  • увеличения расхода теплоносителя в циркуляционном контуре;
  • подогрева промежуточного теплоносителя.

Выбор типа регенеративного теплообменника производят в зависимости от расчетных параметров удаляемого и приточного воздуха и влаговыделений внутри помещения. Регенеративные теплообменники могут устанавливаться в зданиях различного назначения в системах механической приточно-вытяжной вентиляции, воздушного отопления и кондиционирования воздуха. Установка регенеративного теплообменника должна обеспечивать противоточное движение воздушных потоков.

Систему вентиляции и кондиционирования воздуха с регенеративным теплообменником необходимо оснастить средствами контроля и автоматического регулирования, которые должны обеспечивать режимы работы с периодическим оттаиванием инея или предотвращением инееобразования, а также поддерживать требуемые параметры приточного воздуха. Для предупреждения инееобразования по приточному воздуху:

  • устраивают обводной канал;
  • предварительно подогревают приточный воздух;
  • изменяют частоту вращения насадки регенератора.

В системах с положительными начальными температурами приточного воздуха при утилизации тепла нет опасности замерзания конденсата на поверхности теплообменника в вытяжном канале. В системах с отрицательными начальными температурами приточного воздуха необходимо применять схемы утилизации, обеспечивающие защиту от обмерзания поверхности воздухонагревателей в вытяжном канале.

error: