Простенький регулируемый DC-DC преобразователь, или лабораторный блок питания своими руками V2. Мощный DC-DC преобразователь Преобразователь напряжения dc повышающий своими руками

Двухтактный генератор импульсов, в котором за счет пропорционального токового управления транзисторами существенно уменьшены потери на их переключение и повышен КПД преобразователя, собран на транзисторах VT1 и VT2 (КТ837К). Ток положительной обратной связи протекает через обмотки III и IV трансформатора Т1 и нагрузку, подключенную к конденсатору С2. Роль диодов, выпрямляющих выходное напряжение, выполняют эмиттерные переходы транзисторов.

Особенностью генератора является срыв колебаний при отсутствии нагрузки, что автоматически решает проблему управления питанием. Проще говоря, такой преобразователь будет сам включаться тогда, когда от него потребуется что-нибудь запитать, и выключаться, когда нагрузка будет отключена. То есть, батарея питания может быть постоянно подключена к схеме и практически не расходоваться при отключенной нагрузке!

При заданных входном UВx. и выходном UBыx. напряжениях и числе витков обмоток I и II (w1) необходимое число витков обмоток III и IV (w2) с достаточной точностью можно рассчитать по формуле: w2=w1 (UВых. - UBх. + 0,9)/(UВx - 0,5). Конденсаторы имеют следующие номиналы. С1: 10-100 мкф, 6.3 В. С2: 10-100 мкф, 16 В.

Транзисторы следует выбирать, ориентируясь на допустимые значения тока базы (он не должен быть меньше тока нагрузки!!! ) и обратного напряжения эмиттер - база (оно должно быть больше удвоенной разности входного и выходного напряжений!!! ) .

Модуль Чаплыгина я собрал для того, чтобы сделать устройство для подзарядки своего смартфона в походных условиях, когда смартфон нельзя зарядить от розетки 220 В. Но увы... Максимум, что удалось выжать, используя 8 батареек соединенных параллельно, это около 350-375 мА зарядного тока при 4.75 В. выходного напряжения! Хотя телефон Nokia моей жены удается подзаряжать таким устройством. Без нагрузки мой Модуль Чаплыгина выдает 7 В. при входном напряжении 1.5 В. Он собран на транзисторах КТ837К.

На фото выше изображена псевдокрона, которую я использую для питания некоторых своих устройств, требующих 9 В. Внутри корпуса от батареи Крона находится аккумулятор ААА, стерео разъем, через который он заряжается, и преобразователь Чаплыгина. Он собран на транзисторах КТ209.

Трансформатор T1 намотан на кольце 2000НМ размером К7х4х2, обе обмотки наматывают одновременно в два провода. Чтобы не повредить изоляцию об острые наружные и внутренние грани кольца притупите их, скруглив острые края наждачной бумагой. Вначале мотаются обмотки III и IV (см. схему) которые содержат по 28 витков провода диаметром 0,16мм затем, так же в два провода, обмотки I и II которые содержат по 4 витка провода диаметром 0,25мм.

Удачи и успехов всем, кто решится на повторение преобразователя! :)

Иногда надо получить высокое напряжение из низкого. Например, для высоковольтного программатора, питающегося от 5ти вольтового USB, надыбать где то 12 вольт.

Как быть? Для этого существуют схемы DC-DC преобразования. А также специализированные микросхемы, позволяющие решить эту задачу за десяток деталек.

Принцип работы
Итак, как сделать из, например, пяти вольт нечто большее чем пять? Способов можно придумать много — например заряжать конденсаторы параллельно, а потом переключать последовательно. И так много много раз в секунду. Но есть способ проще, с использованием свойств индуктивности сохранять силу тока.

Чтобы было предельно понятно покажу вначале пример для сантехников.

Фаза 1

Заслонка резко закрывается. Потоку больше деваться некуда, а турбина, будучи разогнанной продолжает давить жидкость вперед, т.к. не может мгновенно встать. Причем давит то она ее с силой большей чем может развить источник. Гонит жижу через клапан в аккумулятор давления. Откуда же часть (уже с повышеным давлением) уходит в потребитель. Откуда, благодаря клапану, уже не возвращается.

Фаза 3

И вновь заслонка закрывается, а турбина начинает яростно продавливать жидкость в аккумулятор. Восполняя потери которые там образовались на фазе 3.

Назад к схемам
Вылезаем из подвала, скидываем фуфайку сантехника, забрасываем газовый ключ в угол и с новыми знаниями начинаем городить схему.

Вместо турбины у нас вполне подойдет индуктивность в виде дросселя. В качестве заслонки обычный ключ (на практике — транзистор), в качестве клапана естественно диод, а роль аккумулятора давления возьмет на себя конденсатор. Кто как не он способен накапливать потенциал. Усе, преобразователь готов!

Фаза 1

Ключ размыкается, но катушку уже не остановить. Запасенная в магнитном поле энергия рвется наружу, ток стремится поддерживаться на том же уровне, что и был в момент размыкания ключа. В результате, напряжение на выходе с катушки резко подскакивает (чтобы пробить путь току) и прорвавшись сквозь диод набивается в конденстор. Ну и часть энергии идет в нагрузку.

Фаза 3

Ключ размыкается и энергия из катушки вновь ломится через диод в конденсатор, повышая просевшее за время фазы 3 напряжение. Цикл замыкается.

Как видно из процесса, видно, что за счет большего тока с источника, мы набиваем напряжение на потребителе. Так что равенство мощностей тут должно соблюдаться железно. В идеальном случае, при КПД преобразователя в 100%:

U ист *I ист = U потр *I потр

Так что если наш потребитель требует 12 вольт и кушает при этом 1А, то с 5 вольтового источника в преобразователь нужно вкормить целых 2.4А При этом я не учел потерь источника, хотя обычно они не очень велики (КПД обычно около 80-90%).

Если источник слаб и отдать 2.4 ампера не в состоянии, то на 12ти вольтах пойдут дикие пульсации и понижение напряжения — потребитель будет сжирать содержимое конденсатора быстрей чем его туда будет забрасывать источник.

Схемотехника
Готовых решений DC-DC существует очень много. Как в виде микроблоков, так и специализированных микросхем. Я же не буду мудрить и для демонстрации опыта приведу пример схемы на MC34063A которую уже использовал в примере .

  • SWC/SWE выводы транзисторного ключа микросхемы SWC — это его коллектор, а SWE — эмиттер. Максимальный ток который он может вытянуть — 1.5А входящего тока, но можно подключить и внешний транзистор на любой желаемый ток (подробней в даташите на микросхему).
  • DRC — коллектор составного транзистора
  • Ipk — вход токовой защиты. Туда снимается напряжение с шунта Rsc если ток будет превышен и напряжение на шунте (Upk = I*Rsc) станет выше чем 0.3 вольта, то преобразователь заглохнет. Т.е. для ограничения входящего тока в 1А надо поставить резистор на 0.3 Ом. У меня на 0.3 ома резистора не было, поэтому я туда поставил перемычку. Работать будет, но без защиты. Если что, то микросхему у меня убьет.
  • TC — вход конденсатора, задающего частоту работы.
  • CII — вход компаратора. Когда на этом входе напряжение ниже 1.25 вольт — ключ генерирует импульсы, преобразователь работает. Как только становится больше — выключается. Сюда, через делитель на R1 и R2 заводится напряжение обратной связи с выхода. Причем делитель подбирается таким образом, чтобы когда на выходе возникнет нужное нам напряжение, то на входе компаратора как раз окажется 1.25 вольт. Дальше все просто — напряжение на выходе ниже чем надо? Молотим. Дошло до нужного? Выключаемся.
  • Vcc — Питание схемы
  • GND — Земля

Все формулы по расчету номиналов приведены в даташите. Я же скопирую из него сюда наиболее важную для нас таблицу:

Вытравил, спаял…

Вот так вот. Простая схемка, а позволяет решить ряд проблем.

Пролог.

У меня есть два мультиметра, и оба имеют один и тот же недостаток – питание от батареи напряжением 9-ть Вольт типа «Крона».

Всегда старался иметь в запасе свежую 9-тивольтовую батарею, но, почему-то, когда требовалось что-то измерить с точностью выше, чем у стрелочного прибора, «Крона» оказывалась либо неработоспособной, либо её хватало всего на несколько часов работы.

Порядок намотки импульсного трансформатора.

Намотать прокладку на кольцевой сердечник столь малых размеров очень сложно, а мотать провод на голый сердечник неудобно и опасно. Изоляция провода может повредиться об острые грани кольца. Чтобы предотвратить повреждение изоляции, притупите острые кромки магнитопровода, как описано .

Чтобы во время укладки провода, витки не «разбегались», полезно, покрыть сердечник тонким слоем клея «88Н» и просушить до намотки.



Вначале мотаются вторичные обмотки III и IV (см. схему преобразователя). Их нужно намотать сразу в два провода. Витки можно закрепить клеем, например, «БФ-2» или «БФ-4».

У меня не нашлось подходящего провода, и я вместо провода расчётного диаметра 0,16мм использовал провод диаметром 0,18мм, что привело к образованию второго слоя в несколько витков.


Затем, так же в два провода, мотаются первичные обмотки I и II. Витки первичных обмоток также можно закрепить клеем.

Преобразователь я собрал методом навесного монтажа, предварительно связав х/б нитью транзисторы, конденсаторы и трансформатор.


Вход, выход и общую шину преобразователя вывел гибким многожильным проводом.


Настройка преобразователя.

Настройка может потребоваться для установки необходимого уровня выходного напряжения.

Я так подобрал количество витков, чтобы при напряжении на аккумуляторе 1,0 Вольт, на выходе преобразователя было около 7 Вольт. При этом напряжении, в мультиметре зажигается индикатор разряда батареи. Таким образом, можно предотвратить слишком глубокий разряд аккумулятора.

Если вместо предложенных транзисторов КТ209К будут использованы другие, тогда придётся подобрать количество витков вторичной обмотки трансформатора. Это связано с разной величиной падения напряжения на p-n переходах у различных типов транзисторов.

Я испытывал эту схему на транзисторах КТ502 при неизменных параметрах трансформатора. Выходное напряжение при этом снизилось на вольт или около того.

Также нужно иметь в виду, что база-эмиттерные переходы транзисторов одновременно являются выпрямителями выходного напряжения. Поэтому, при выборе транзисторов, нужно обратить внимание на этот параметр. То есть, максимально-допустимое напряжение база-эмиттер должно превышать необходимое выходное напряжение преобразователя.


Если генерация не возникает, проверьте фазировку всех катушек. Точками на схеме преобразователя (см. выше) отмечено начало каждой обмотки.


Чтобы не возникало путаницы при фазировке катушек кольцевого магнитопровода, примите за начало всех обмоток, например , все выводы выходящие снизу, а за конец всех обмоток, все выводы выходящие сверху.


Окончательная сборка импульсного преобразователя напряжения.

Перед окончательной сборкой, все элементы схемы были соединены многожильным проводом, и была проверена способность схемы принимать и отдавать энергию.


Для предотвращения замыкания, импульсный преобразователь напряжения был со стороны контактов заизолирован силиконовым герметиком.


Затем все элементы конструкции были размещены в корпусе от «Кроны». Для того, чтобы передняя крышка с разъёмом не утапливалась внутрь, между передней и задней стенками была вставлена пластинка из целлулоида. После чего, задняя крышка была закреплена клеем «88Н».


Для зарядки модернизированной "Кроны" пришлось изготовить дополнительный кабель со штекером типа Джек 3,5мм на одном из концов. На другом конце кабеля, для снижения вероятности короткого замыкания, были установлены стандартные приборные гнёзда, вместо аналогичных штекеров.

Доработка мультиметра.

Мультиметр DT-830B сразу же заработал от модернизированной «Кроны». А вот тестер M890C+ пришлось немного доработать.

Дело в том, что в большинстве современных мультиметров задействована функция автоматического отключения питания. На картинке показана часть панели управления мультиметра, где обозначена данная функция.


Схема автоотключения (Auto Power Off) работает следующим образом. При подключении батареи, заряжется конденсатор С10. При включении питания, пока конденсатор C10 разряжается через резистор R36, на выходе компаратора IC1 удерживается высокий потенциал, что приводит к отпиранию транзисторов VT2 и VT3. Через открытый транзистор VT3 напряжение питания и попадает в схему мультиметра.


Как видите, для нормальной работы схемы, нужно подать питание на С10 ещё до того, как включится основная нагрузка, что невозможно, так как наша модернизированная «Крона», напротив, включится только тогда, когда появится нагрузка.


В общем, вся доработка заключалась в установке дополнительной перемычки. Для неё я выбрал место, где это было сделать удобнее всего.

К сожалению, обозначения элементов на электрической схеме не совпали с обозначениями на печатной плате моего мультиметра, поэтому точки для установки перемычки нашёл так. Прозвонкой выявил нужный вывод выключателя, а шину питания +9V определил по 8-ой ножке операционного усилителя IC1 (L358).


Мелкие подробности.

Сложно было приобрести всего один аккумулятор. Их в основном продают, либо парами, либо по четыре штуки. Однако некоторые комплекты, например, «Varta», поставляются по пять аккумуляторов в блистере. Если Вам повезёт так же, как и мне, то Вы сможете разделить с кем-нибудь такой комплект. Аккумулятор я купил всего за 3,3$, тогда как одна «Крона» стоит от 1$ до 3,75$. Есть, правда, ещё «Кроны» и по 0,5$, но те и вовсе мёртворождённые.

На китайских торговых площадках появится интересный модуль понижающего преобразователя напряжения XL4016. Схема позволяет работать с регулированием напряжения (CV) и тока (CC). После добавления в систему источника питания (например, ненужного блока питания ноутбука, трансформатора с выпрямителем и конденсатором) модуль можно использовать в качестве регулируемого БП, или стабилизатора с фиксированным выходным напряжением.

Схема позволяет установить максимальный выходной ток или работать как источник тока (CC). Работа в режиме CC может использоваться, например, для питания светодиодов, зарядки аккумулятора (в том числе автомобильного) или питания модуля Пельтье. Многооборотные потенциометры, установленные на плате, можно заменить на более крупные и удобные, оснащенные ручкой. Импульсная система имеет высокую эффективность, но при более высоких мощностях потребуется принудительная циркуляция воздуха или больший радиатор.

Схема подключения модуля DC-DC

Модуль инвертора можно найти на Алиэкспрессе, его описание часто содержит параметры 9 A 300 Вт, 1,2 — 35 В. Давайте подробнее рассмотрим возможности схемы этого преобразователя и проведём тесты. На радиаторах установлены двойной диод 10A STPS2045 и цепь понижающего инвертора XL4016. Обозначение входов и выходов питания и распределение потенциометров можно найти на рисунке ниже:

Полупроводники изолированы от радиаторов, что снижает риск коротких замыканий, но также может снизить эффективность рассеивания тепла. Согласно найденному даташиту, XL4016 в корпусе TO220 имеет предел по току 8 А, возможно, в модуле был использован элемент с большей заявленной эффективностью. Двухцветный светодиод меняет свой цвет с синего на красный при выходном токе >0,8 А. После замыкания выхода с помощью амперметра удалось отрегулировать выходной ток в режиме от CC до 9 A. Работа светодиодов очень удобна и информативна. Потребляемый ток без нагрузки около 15 мА.

Электролитические конденсаторы находятся достаточно близко к радиаторам и температура может уменьшить их срок службы, в то время как большая индуктивность просто висит в воздухе, так что ее стоит закрепить клеем, чтобы не повредить печатную плату во время механических воздействий. С другой стороны платы припаян стабилизатор 5В, LM358 и резистор, используемый при измерении выходного тока.

Испытания и тесты модуля XL4016

Стабильность выходного напряжения по сравнению с выходными токами является удовлетворительной, далее пример графика выходного напряжения, установленного на 3.3V в зависимости от тока нагрузки.

Влияние входного напряжения при установке выходного крайне мало.

Зависимость эффективности КПД преобразователя от изменения выходного тока для двух выходных напряжений.

Зависимость КПД от изменения входного напряжения.

Пульсации и отклонения выходного напряжения при разных условиях эксплуатации показаны на осциллограммах далее.

Применение понижающего преобразователя

Использован был этот модуль в качестве зарядного устройства для игрового ноутбука, он отлично работает и не нагревается критично. Вход: 29 В, выход 19 В, Imax 4 А в соответствии с параметрами исходного адаптера переменного тока 220 В.

Самый большой ток снимался с модуля работающего как блок питания для радиотелефона, на котором получалось 28 В и 9 A, что очень хорошо.

В качестве зарядного устройства он работает после добавления большого радиатора к XL или замены его на радиатор большего размера, чем заводской, плюс вентилятор, который также охлаждает конденсаторы.

Безопасный диапазон тока при длительной нагрузке составляет около 7 А, при напряжении выше 32 В стабилизатор очень горячий. Перед преобразователем хорошо будет поставить большой ёмкий конденсатор по питанию.

error: