Мигалки из светодиодов. Простая мигалка на КТ315 Схемы светодиодных мигалок на транзисторах

Представляю 3 схемы мигалок и 2 схемы цветомузыки. Первая - на 2 светодиода, остальные для одного.

Транзисторы КТ209М pnp типа. Можно использовать и npn с изменением полярности питания, светодиодов и конденсаторов.

В интернете есть подобные схемы симметричного мультивибратора, где транзисторы соединены эмиттерами, а коллекторы вверху, например, как в этой схеме звукового генератора: Схема собрана на пластиковой карточке.

Вторая схема состоит из двух транзисторов pnp и npn, одного резистора, конденсатора и светодиода. Питается от двух аккумуляторов AA, как и все схемы этого обзора. Транзисторы: КТ3107И и КТ3102Б (а может быть Л(И) - цвет не однозначный), также тёмно-зелёная точка почему-то на округлой стороне транзистора, а не на плоской, как указано во всех справочниках.

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

В третьей схеме добавлен второй резистор. Параметры мигания во всех схемах можно настраивать изменением ёмкость конденсаторов и сопротивления резисторов.

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

Светодиод мигает под музыку из компьютера или любого другого музыкального устройства. Подключается к одному из двух звуковых каналов. В схеме используется NPN транзистор С9014, резистор 10 кОм, мощный светодиод 3 Вт. Питается от литиевого аккумулятора напряжением 3,7 В.

Вместо аккумулятора можно использовать 5 Вольт из блока питания системника. Яркость изменяется подбором сопротивления резистора, напряжения питания и громкости на компьютере.

Для просмотра в большем размере нужно нажать на ссылку с названием видео, или на кнопку YouTube во время проигрывания!

На видео используется мощный светодиод с допустимым максимальным током 700 мА при падении напряжения 4 В. Поэтому, если взять обычный светодиод с током 20 мА, то важно не допустить сильного превышения этого значения тока.

Вторая схема цветомузыки, на мой взгляд менее удачная, но, может быть кому-то пригодится. Публикую фото, с подписанными значениями деталей. Сопротивление резистора и ёмкость конденсатора можно менять.

Новые статьи добавлены на второй сайт, на который можно перейти через кнопку "Спектроскопия" в меню сайта!

Светоизлучающие диоды находят широкое применение в самых разных сферах.

Перед тем как сделать мигающий светодиод самостоятельно, следует учесть все нюансы изготовления такой осветительной конструкции, а также приобрести качественные материалы и подготовить грамотную схему сборки.

Готовые мигающие светодиоды

Мигающие или моргающие , по своей сути, являются завершенными, уже готовыми функциональными устройствами, которые играют роль стандартной световой сигнализации и хорошо привлекают внимание.

Такие световые приборы своими размерами абсолютно не отличаются от габаритов стандартного индикаторного светодиода, а в конструкции устройства предусмотрено наличие полупроводникового генераторного чипа и нескольких дополнительных элементов.

Помимо компактности, преимущества готовых осветителей представлены очень широким диапазоном показателей питающего напряжения, разнообразным цветом излучения и всевозможной периодичностью вспышек, а также высокой экономичностью.

Схемы использования

На данный момент существует несколько вполне доступных для самостоятельной реализации практических схем, которые отличаются количеством и типом радиодеталей.

Первая схема характеризуется наличием маломощного , полярного конденсатора 16В - 470 мкФ, резистора и светодиода. Достаточность питания устройства обеспечивается стандартным источником на 12В. Принцип действия напоминает «лавинный пробой», а ощутимый минус такой схемы представлен необходимостью использовать специальный источник напряжения.

Принципиальная схема вспышек на светодиоде

Для второй схемы характерна сборка, аналогичная транзисторному мультивибратору. Именно этим обусловлена высокая надежность устройства. Принцип функционирования базируется на использовании пары полярных конденсаторов 16 В - 10 мкФ, пары ограничивающих резисторов (R1) и (R4), пары резисторов (R2) и (R3), а также пары световых диодов.

Вторая схема работает в условиях широкого диапазона напряжений при последовательном и параллельном подключении световых диодов, а изменение конденсаторной емкости позволяет получить мультивибратор с различным свечением.

Обычные светодиоды

Современные светодиоды способны стать полноценной заменой лампам накаливания, что обусловлено различными характеристиками таких источников света, изготовленных на основе искусственного полупроводникового кристаллика.

Основные параметры светодиодов представлены:

  • напряжением питания;
  • рабочими токовыми величинами;
  • эффективностью или световой отдачей;
  • температурой свечения или цветом;
  • углом излучения;
  • размерами;
  • сроком деградации.

должны соблюдаться определенные правила. В зависимости от характеристик и типа источника питания, различается пара вариантов подключения устройства к сети 220В: посредством драйвера со стандартным токовым ограничителем или при помощи хорошо стабилизирующего напряжение, специального блока питания.

Сборка конструкций на основе нескольких LED-осветителей предполагает использование схем последовательного или параллельного подсоединения.

Как сделать, чтобы светодиоды мигали

Для самостоятельной сборки мигающего , потребуется приобрести несколько компонентов, представленных:
  • парой резисторов 6.8 на 15 Ом;
  • парой резисторов, имеющих сопротивление 470 на 680 Ом;
  • парой маломощных транзисторов «n-p-n»;
  • парой электрических конденсаторов, имеющих емкость 47 - 100 мкФ;
  • маломощным светодиодом;
  • паяльником бытовым, припоем и флюсом.

На всех радиодеталях зачищаются и лудятся выводные части элементов. Очень важно при включении конденсаторов учитывать полярность. Мигание светового диода обеспечивается цикличностью подачи тока.

При правильной сборке всех элементов, изготовленный осветительный прибор обладает частотой мигания порядка полутора Гц, или примерно пятнадцать вспышек на каждые десять секунд.

Схемы «мигалок» на их основе

Получение простых поочередных вспышек осуществляется при помощи пары транзисторов C945 или аналоговых элементов. В первом случае коллектор располагается в центральной части, а во втором - центр отводится под размещение базы.

Пара мигающих светодиодов и схема с одним диодом собирается в соответствии со стандартной схемой. Частота мигания обеспечивается наличием в схеме конденсаторов (C1) и (C2).

Схема сопротивления p-n переходов

При необходимости выполнить подключение сразу нескольких led-элементов, устанавливается достаточный по мощности PNP-транзистор.

Мигающие светодиоды получаются при подключении выводов к разноцветным элементам, поочередные импульсы обеспечиваются встроенным генератором, а частота моргания напрямую зависит от установленной программы.

Область применения

Моргающие светодиодные источники света, оснащенные стандартным генератором встроенного типа, находят широкое применение в новогодних гирляндах.

Именно последовательная сборка таких изделий, дополненная установленным резистором, имеющим незначительное отличие по номинальным показателям, позволяет добиться сдвига в процессе мигания отдельных элементов электронной цепи.

Итогом такой сборки является оригинальный световой эффект, который совсем не нуждается в добавлении слишком сложного блока для управления. Чаще всего новогодняя гирлянда подключается посредством обычного диодного моста.

Мигающие диодные токоуправляемые световые излучатели востребованы в самых различных современных бытовых приборах и электротехнике, где играют роль стандартных индикаторов. При этом такие индикаторные огоньки сигнализируют об определенном состоянии прибора или уровне заряда. На основе моргающих диодов осуществляется сборка электронных табло, разных рекламных вывесок, всевозможных детских игрушек и очень многих других товаров.

Моргающие диоды прекрасно подходят для создания огромного количества интересных и необычных световых эффектов, включая «бегущую волну».

Как сделать фонарик из светодиодов

Фонари, изготовленные на основе светодиодного источника света, отличаются большей яркостью и экономичностью. Источником питания служит аккумулятор на 12 В. Чтобы сделать такой фонарь своими руками необходимо приобрести:

  • отрезок ПВХ-трубы длиной 50 мм;
  • клеящий состав;
  • пару резьбовых ПВХ-фитингов;
  • резьбовую ПВХ-заглушку;
  • тумблер;
  • небольшой кусок пенополистирольного листа;
  • светодиодную лампочку;
  • изолирующую ленту.

Самодельный фонарик

Работы по сборке выполняются с использованием паяльника, припоя, ножовки и надфиля, наждачной бумаги и бокорезов.

После размещения всех элементов в корпусе из ПВХ-трубы, устанавливается светодиодный источник света, а также монтируются фитинги и заглушка, защищающие фонарь от попадания влаги внутрь.

Собранный по схеме фонарь может быть представлен не только целиковой моделью, но и последовательным соединением сразу нескольких батареек АА или ААА, что обеспечивает оптимальное суммарное напряжение 12 В.

Бегущие огни на светодиодах своими руками: схема

Одним из вариантов применения твердотельных световых источников в декоративных целях, является сборка так называемых «бегущих огней» на диодах, включающая в себя генератор прямоугольных импульсов, счетчик, дешифратор и устройства индикации.

Сборка всех элементов по предложенной схеме выполняется на макетной беспаечной плате, а устанавливаемые конденсаторы и резисторы по номиналу могут иметь некоторый разброс, но строго в пределах ±20%.

с тонким жалом, припой и канифоль;

  • острый канцелярский или строительный нож;
  • силиконовый прозрачный герметик.
  • Пошаговая технология самостоятельной сборки диодной гирлянды:

    • определиться с оптимальным расстоянием между диодами;
    • раскрутить и распрямить провод;
    • нанести маркером на провод отметки под расположение диодов;
    • на участках отметок острым ножом удалить изоляцию;
    • нанести на участки без изоляции канифоль и припой;
    • зафиксировать световые диоды, припаяв их ножки;
    • заизолировать участки крепления диодов и силиконового герметика.

    На заключительном этапе выполняется подсоединение блока питания на 8-12V и стандартного резистора.

    При самостоятельной сборке светящейся гирлянды необходимо помнить, что только последовательное соединение всех светодиодов в цепи по стандартной схеме, позволяет получить традиционный мерцающий эффект.

    Сфера применения мигающих светодиодов в настоящее время достаточно широка. При желании и некоторых знаниях в области электрики, на основе таких источников света вполне можно самостоятельно изготовить различные сигнальные схемы, оригинальные детские игрушки, портативные фонарики и даже светящиеся новогодние гирлянды.

    Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.

    Готовые мигающие светодиоды и схемы с их использованием

    Среди многообразия готовых мигающих светодиодов, наиболее распространены изделия в 5-ти мм корпусе. Помимо готовых одноцветных мигающих светодиодов, существуют двухвыводные экземпляры с двумя или тремя кристаллами разного цвета. У них в одном корпусе с кристаллами встроен генератор, который работает на определенной частоте. Он выдает одиночные чередующиеся импульсы на каждый кристалл по заданной программе. Скорость мерцания (частота) зависит от заданной программы. При одновременном свечении двух кристаллов мигающий светодиод выдает промежуточный цвет. Вторыми по популярности являются мигающие светоизлучающие диоды, управляемые током (уровнем потенциала). То есть, чтобы заставить мигать светодиод данного типа нужно менять питание на соответствующих выводах. Например, цвет излучения двуцветного красно-зелёного светодиода с двумя выводами зависит от направления протекания тока.

    Трёхцветный (RGB) мигающий светодиод с четырьмя выводами имеет общий анод (катод) и три вывода для управления каждым цветом отдельно. Эффект мигания достигается путём подключения к соответствующей системе управления.

    Смастерить мигалку на основе готового мигающего светодиода достаточно легко. Для этого потребуется батарейка CR2032 или CR2025 и резистор на 150–240 Ом, который следует припаять на любой вывод. Соблюдая полярность светодиода, контакты подключаются к батарейке. Светодиодная мигалка готова, можно наслаждаться визуальным эффектом. Если использовать батарейку типа «крона», основываясь на законе Ома, следует подобрать резистор большего сопротивления.

    Обычные светодиоды и семы мигалок на их основе

    Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

    Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

    Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

    Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

    • два транзистора КТ3102 (или их аналога);
    • два полярных конденсатора на 16В емкостью 10 мкФ;
    • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
    • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
    • два светодиода любого цвета.

    В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1. В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.

    Вторая схема имеет сразу несколько преимуществ:

    1. Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
    2. В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
    3. Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
    4. Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.

    В обоих вариантах можно применить транзисторы pnp проводимости, но с коррекцией схемы подключения.

    Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

    Следует помнить, что питания от 3В будет недостаточно, чтобы зажечь светодиод с высоким значением прямого напряжения. Например, для светодиода белого, синего или зелёного цвета потребуется большее напряжение.

    Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода. Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы.

    Область применения

    Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд. Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи. В итоге получается прекрасный световой эффект, не требующий сложного блока управления. Достаточно только подключить гирлянду через диодный мост.

    Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние (вкл./выкл. уровень заряда и пр.). Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей.

    Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например – бегущую волну.

    Читайте так же

    Мультивибратор — простой генератор импульсов. Это одна из первых конструкций начинающих радиолюбителей. На мультивибраторе можно собрать простую мигалку на светодиодах. Итак, если Вы — начинающий радиолюбитель, то после освоения теоретической части электроники можно приступать к практике.

    Простой мультивибратор

    Схема распространённого простого мультивибратора для двух каналов представлена ниже. Светодиодов в одном плече может быть не только один, но два, три и больше если соединить их.

    Трёхканальный мультивибратор

    Обычно схема мультивибратора строится на двух транзисторах, как на рисунке выше и предназначен он для получения прямоугольных импульсов. Но н едавно в интернете была найдена схема мультивибратора на три канала.

    Рассматриваемый мультивибратор имеет три канала, которые открываются поочередно. Весь монтаж был выполнен на макетной плате, притом со значительными разбросами. В схеме использованы маломощные транзисторы типа КТ315, можно также использовать КТ312, КТ3102, а также более мощные отечественные транзисторы (КТ815, КТ817 и даже КТ819).

    Выбор очень велик, можно использовать буквально любые транзисторы прямой или обратной проводимости отечественного и импортного производства. При использовании транзисторов прямой проводимости (КТ361, КТ814, КТ816, КТ818) необходимо поменять источник питания + с — , а также полярность электролитических конденсаторов.

    При правильно собранной схеме в настройке мультивибраторы не нуждаются. Следует проверить весь монтаж, особое внимание нужно уделить на подключение электролитических конденсаторов. Напряжение питания подбирается в районе 4…6 вольт, хотя и от «кроны» (9В) тоже работает.

    Частоту мигания, т.е. генерирования импульсов по желанию можно подбирать конденсаторами. Конденсаторы следует ставить одинаковой ёмкости, чтобы длительность импульсов была одинаковой.

    Одной из самых простых схем в любительской радиоэлектронике является светодиодная мигалка на одном транзисторе. Ее изготовление под силу любому новичку, у которого есть минимальный набор для пайки и полчаса времени.

    Рассматриваемая схема хоть и отличается простотой, однако, она позволяет наглядно увидеть лавинный пробой транзистора, а также работу электролитического конденсатора. В том числе, путем подбора емкости можно легко изменять частоту мигания светодиода. Экспериментировать также можно с входным напряжением (в небольших диапазонах), которое тоже влияет на работу изделия.

    Устройство и принцип работы

    Мигалка состоит из следующих элементов:
    • источник питания;
    • сопротивление;
    • конденсатор;
    • транзистор;
    • светодиод.
    Работает схема по очень простому принципу. В первой фазе цикла транзистор «закрыт», то есть не пропускает ток из источника питания. Соответственно, светодиод не светится.
    Конденсатор расположен в цепи до закрытого транзистора, потому накапливает электрическую энергию. Происходит это до тех пор, пока напряжение на его выводах не достигнет показателя, достаточного для обеспечения так называемого лавинного пробоя.
    Во второй фазе цикла накопленная в конденсаторе энергия «пробивает» транзистор, и ток проходит через светодиод. Он вспыхивает на короткое время, а затем опять гаснет, так как транзистор опять закрывается.
    Далее мигалка работает в циклическом режиме и все процессы повторяются.

    Необходимые материалы и радиодетали

    Чтобы собрать светодиодную мигалку своими руками, работающую от источника питания с напряжением 12 В, понадобится следующее:
    • паяльник;
    • канифоль;
    • припой;
    • резистор на 1 кОм;
    • конденсатор емкостью 470-1000 мкФ на 16 В;
    • транзистор КТ315 или его более современный аналог;
    • классический светодиод;
    • простой провод;
    • источник питания на 12 В;
    • спичечный коробок (необязательно).


    Последний компонент выступает в роли корпуса, хотя собрать схему можно и без него. В качестве альтернативы можно использовать монтажную плату. Навесной монтаж, описанный далее, рекомендуется для начинающих радиолюбителей. Такой способ сборки позволяет быстрее сориентироваться в схеме и сделать все правильно с первого раза.

    Последовательность сборки мигалки

    Изготовление светодиодной мигалки на 12 В осуществляется в следующей последовательности. Первым делом подготавливаются все вышеперечисленные компоненты, материалы и инструменты.
    Для удобства светодиод и провода питания лучше сразу закрепить на корпусе. Далее к выводу «+» следует припаять резистор.




    Свободная «ножка сопротивления соединяется с эмиттером транзистора. Если КТ315 расположить маркировкой вниз, то этот вывод будет у него крайним правым. Далее эмиттер транзистора соединяется с положительным выводом конденсатора. Определить его можно по маркировке на корпусе – «минус» обозначается светлой полосой.
    Следующим этапом идет соединение коллектора транзистора с положительным выводом светодиода. У КТ315 – это ножка посредине. «Плюс» светодиода можно определить визуально. Внутри элемента имеется два электрода, отличающихся размерами. Тот, который поменьше, и будет положительным.



    Теперь осталось только припаять отрицательный вывод светодиода к соответствующему проводнику источника питания. К этой же линии подсоединяется «минус» конденсатора.
    Светодиодная мигалка на одном транзисторе готова. Подав на нее питание, можно увидеть ее работу по вышеописанному принципу.
    Если есть желание уменьшить или увеличить частоту мигания светодиода, то можно поэкспериментировать с конденсаторами, имеющими разную емкость. Принцип очень простой – чем больше емкость элемента, тем реже будет мигать светодиод.
    error: